ChromBiSim: Interactive chromatin biclustering using a simple approach.

Combinatorial patterns of histone modifications sketch the epigenomic locale. Specific positions of these modifications in the genome are marked by the presence of such signals. Various methods highlight such patterns on global scale hence missing the local patterns which are the actual hidden combinatorics. We present ChromBiSim, an interactive tool for mining subsets of modifications from epigenomic profiles. ChromBiSim efficiently extracts biclusters with their genomic locations. It is the very first user interface based and multiple cell type handling tool for decoding the interplay of subsets of histone modifications combinations along their genomic locations. It displays the results in the forms of charts and heat maps in accordance with saving them in files which could be used for post analysis. ChromBiSim tested on multiple cell types produced in total 803 combinatorial patterns. It could be used to highlight variations among diseased versus normal cell types of any species. AVAILABILITY ChromBiSim is available at (http://sourceforge.net/projects/chrombisim) in C-sharp and python languages.

[1]  Rosane Minghim,et al.  InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams , 2015, BMC Bioinformatics.

[2]  Dustin E. Schones,et al.  Genome-wide approaches to studying chromatin modifications , 2008, Nature Reviews Genetics.

[3]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[4]  Kai Tan,et al.  Finding combinatorial histone code by semi-supervised biclustering , 2012, BMC Genomics.

[5]  William Stafford Noble,et al.  Identification of higher-order functional domains in the human ENCODE regions. , 2007, Genome research.

[6]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[7]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[8]  Amos Tanay,et al.  Spatial Clustering of Multivariate Genomic and Epigenomic Information , 2009, RECOMB.

[9]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[10]  D. Reich,et al.  Functional Enhancers at the Gene-Poor 8q24 Cancer-Linked Locus , 2009, PLoS genetics.

[11]  Bing Ren,et al.  Prediction of regulatory elements in mammalian genomes using chromatin signatures , 2008, BMC Bioinformatics.

[12]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[13]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[14]  William Stafford Noble,et al.  Unsupervised segmentation of continuous genomic data , 2007, Bioinform..

[15]  Manolis Kellis,et al.  Discovery and characterization of chromatin states for systematic annotation of the human genome , 2010, Nature Biotechnology.

[16]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[17]  C. Allis,et al.  Operating on chromatin, a colorful language where context matters. , 2011, Journal of molecular biology.

[18]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[19]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[20]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[21]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[22]  Amos Tanay,et al.  Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos , 2009, PLoS biology.

[23]  Michael A. Freitas,et al.  Identification of novel histone post-translational modifications by peptide mass fingerprinting , 2003, Chromosoma.

[24]  Bing Ren,et al.  ChromaSig: A Probabilistic Approach to Finding Common Chromatin Signatures in the Human Genome , 2008, PLoS Comput. Biol..

[25]  Peter A. DiMaggio,et al.  The significance, development and progress of high-throughput combinatorial histone code analysis , 2010, Cellular and Molecular Life Sciences.

[26]  K. Tan,et al.  Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering , 2011, Nucleic acids research.