Computation of best $$L^{\infty }$$L∞ exponential sums for 1 / x by Remez’ algorithm
暂无分享,去创建一个
[1] E. Süli,et al. An introduction to numerical analysis , 2003 .
[2] H. L. Loeb,et al. On the Remez algorithm for non-linear families , 1970 .
[3] W. Hackbusch,et al. Hierarchical Matrices: Algorithms and Analysis , 2015 .
[4] C de la Valle-Poussin,et al. Lecons sur l'approximation des fonctions d'une variable reelle , 1919 .
[5] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[6] Randall J. LeVeque,et al. On least squares exponential sum approximation with positive coefficients , 1980 .
[7] Wolfgang Hackbusch,et al. Minimax approximation for the decomposition of energy denominators in Laplace-transformed Møller-Plesset perturbation theories. , 2008, The Journal of chemical physics.
[8] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[9] D. Braess. Nonlinear Approximation Theory , 1986 .
[10] Dietrich Braess,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .
[11] D. Kammler. CHEBYSHEV APPROXIMATION OF COMPLETELY MONOTONIC FUNCTIONS BY SUMS OF EXPONENTIALS , 1976 .
[12] Dietrich Braess,et al. On the efficient computation of high-dimensional integrals and the approximation by exponential sums , 2009 .
[13] A. Dakin,et al. Lecons sur l'approximation des Fonctions d'une Variable Reelle , 1920, The Mathematical Gazette.
[14] H. Werner. Vorlesung über Approximationstheorie , 1966 .
[15] J. Varah. On Fitting Exponentials by Nonlinear Least Squares , 1982 .
[16] D. Kammler. Least Squares Approximation of Completely Monotonic Functions by Sums of Exponentials , 1979 .
[17] Wolfgang Hackbusch. Approximation of 1/||x−y|| by Exponentials for Wavelet Applications (Short Communication) , 2005, Computing.
[18] Philippe Y. Ayala,et al. Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .