Organic / IV, III-V Semiconductor Hybrid Solar Cells

We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V), nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI) nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type) deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type) forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines), conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

[1]  Vladimir M. Aroutiounian,et al.  Electrical conductivity mechanisms in porous silicon , 2003 .

[2]  Michael J Sailor,et al.  Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization. , 2003, Chemical communications.

[3]  Chie Gau,et al.  Arrangement of band structure for organic-inorganic photovoltaics embedded with silicon nanowire arrays grown on indium tin oxide glass , 2009 .

[4]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[5]  Muriel Firon,et al.  Hybrid solar cells based on thin-film silicon and P3HT : A first step towards nano-structured devices , 2006 .

[6]  Gong Zhang,et al.  Nanotube–Silicon Heterojunction Solar Cells , 2008 .

[7]  Pang-Leen Ong,et al.  Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions , 2010, Nanotechnology.

[8]  Masashi Kawasaki,et al.  Electron transport in ZnO thin films , 2005 .

[9]  Preben J. Møller,et al.  Electronic charge distribution at interfaces between Cu-phthalocyanine films and semiconductor surfaces , 2003 .

[10]  Donal D. C. Bradley,et al.  The photovoltaic response in poly(p-phenylene vinylene) thin-film devices , 1994 .

[11]  Naoki Ogawa,et al.  Photoconductivity in Semiconducting Single-Walled Carbon Nanotubes , 2001 .

[12]  Holger T. Grahn Introduction To Semiconductor Physics , 1999 .

[13]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[14]  Ion Tiginyanu,et al.  A comparison of pores in silicon and pores in III–V compound materials , 2003 .

[15]  James Kirkpatrick,et al.  Factors limiting the efficiency of molecular photovoltaic devices , 2004 .

[16]  Weifeng Zhang,et al.  Dye-Sensitized Solar Cells Based on , 2011 .

[17]  N. Tomozeiu,et al.  Properties of the Organic‐on‐Inorganic Semiconductor Barrier Contact Diodes In/PTCDI/p‐Si and Ag/CuPc/p‐Si , 1991 .

[18]  Igor A. Levitsky,et al.  Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination , 2003 .

[19]  Masanori Ozaki,et al.  Junction formation with pure and doped polyacetylene , 1979 .

[20]  Jean-Luc Brédas,et al.  Molecular understanding of organic solar cells: the challenges. , 2009, Accounts of Chemical Research.

[21]  Amlan J. Pal,et al.  Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices , 2006 .

[22]  Denise A. Mayes,et al.  Space charge analysis in doped zinc phthalocyanine thin films , 1998 .

[23]  E. Yu,et al.  InP nanowire/polymer hybrid photodiode. , 2008, Nano letters.

[24]  Enkeleda Dervishi,et al.  SOCl2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions , 2008 .

[25]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[26]  Donal D. C. Bradley,et al.  Hybrid nanocrystalline TiO2 solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor , 2004 .

[27]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[28]  H. Bässler,et al.  INTRINSIC PHOTOCONDUCTION IN PPV-TYPE CONJUGATED POLYMERS , 1997 .

[29]  Emmanuel Kymakis,et al.  Photovoltaic Properties of Dye Functionalized Single-Wall Carbon Nanotube/Conjugated Polymer Devices , 2004 .

[30]  Tong Wang,et al.  Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires , 2007 .

[31]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[32]  R. LaPierre,et al.  A GaAs nanowire/P3HT hybrid photovoltaic device , 2009, Nanotechnology.

[33]  M. I. Fedorov,et al.  Temperature-dependent properties of organic-on- inorganic Ag/p-CuPc/n-GaAs/Ag photoelectric cell , 2005 .

[34]  Tingying Zeng,et al.  Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. , 2006, Journal of the American Chemical Society.

[35]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[36]  Ashraful Islam,et al.  Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1% , 2006 .

[37]  Leigh T. Canham,et al.  Properties of Porous Silicon , 1998 .

[38]  Yi Jia,et al.  Double-walled carbon nanotube solar cells. , 2007, Nano letters.

[39]  Yasuhiro Matsumoto,et al.  Performance of P3HT/c-Si hybrid solar cell , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[40]  F Garnier Hybrid organic-on-inorganic photovoltaic devices , 2002 .

[41]  N S Lewis,et al.  Thin Films of n-Si/Poly-(CH3)3Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures , 1990, Science.

[42]  Mingfei Xu,et al.  Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. , 2010, Small.

[43]  P. Avouris,et al.  Photoconductivity of Single Carbon Nanotubes , 2003 .

[44]  S. Riad,et al.  Dark and photoelectric conversion properties of p-MgPc/n-Si (Organic/Inorganic) heterojunction cells. , 2000 .

[45]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[46]  Elias Stathatos,et al.  Study of hybrid solar cells made of multilayer nanocrystalline titania and poly(3-octylthiophene) or poly-(3-(2-methylhex-2-yl)-oxy-carbonyldithiophene) , 2009, Nanotechnology.

[47]  Enkeleda Dervishi,et al.  Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. , 2009, ACS nano.

[48]  Natalya Tokranova,et al.  Hybrid solar cells based on organic material embedded into porous silicon , 2005, SPIE OPTO.

[49]  Howard M. Branz,et al.  Exciton harvesting, charge transfer, and charge-carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells , 2008 .

[50]  U. Kortshagen,et al.  Hybrid solar cells from P3HT and silicon nanocrystals. , 2009, Nano letters.

[51]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[52]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[53]  Jenny Nelson,et al.  Hybrid polymer-metal oxide thin films for photovoltaic applications{ , 2007 .

[54]  Jing-Shun Huang,et al.  Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass , 2009 .

[55]  B. Sankapal,et al.  Electrical properties of air-stable, iodine-doped carbon-nanotube–polymer composites , 2007 .

[56]  Jörg Ackermann,et al.  Highly Efficient Hybrid Solar Cells Based on an Octithiophene–GaAs Heterojunction , 2005 .

[57]  Howard M. Branz,et al.  Exciton splitting and carrier transport across the amorphous-silicon/polymer solar cell interface , 2006 .

[58]  M. M. El-Nahass,et al.  Current transport mechanisms and photovoltaic properties of tetraphenylporphyrin/n-type silicon heterojunction solar cell , 2005 .

[59]  M. M. El-Nahass,et al.  Photovoltaic properties of NiPc/p-Si (organic/inorganic) heterojunctions , 2005 .

[60]  Brian A. Gregg,et al.  Organic and nano-structured composite photovoltaics: An overview , 2005 .

[61]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[62]  Kai Xiao,et al.  High-mobility thin-film transistors based on aligned carbon nanotubes , 2003 .

[63]  Richard H. Friend,et al.  Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices , 1999 .

[64]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[65]  Michael D. McGehee,et al.  Nanostructured Organic—Inorganic Hybrid Solar Cells , 2009 .

[66]  Natalya Tokranova,et al.  Hybrid solar cells based on porous Si and copper phthalocyanine derivatives , 2004 .

[67]  David L. Carroll,et al.  Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics , 2007 .

[68]  G. Horowitz,et al.  Polythiophene-GaAs p-n heterojunction solar cells , 1986 .

[69]  Emmanuel Kymakis,et al.  Post-fabrication annealing effects in polymer-nanotube photovoltaic cells , 2006 .

[70]  Elvira Fortunato,et al.  Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon , 2008 .

[71]  H. J. Kim,et al.  Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br , 1997, Nature.

[72]  Jörg Ackermann,et al.  Growth of organic semiconductors for hybrid solar cell application , 2002 .

[73]  Sheila G. Bailey,et al.  Single‐wall carbon nanotube–polymer solar cells , 2005 .

[74]  A. Halliday,et al.  Core formation on Mars and differentiated asteroids , 1997, Nature.

[75]  M. M. El-Nahass,et al.  Carrier transport mechanisms and photovoltaic properties of Au/p-ZnPc/p-Si solar cell , 2005 .