Modeling and Data for Thermal Conductivity of Ultrathin Single-Crystal SOI Layers at High Temperature

Simulations of the temperature field in silicon-on-insulator (SOI) and strained-Si transistors can benefit from experimental data and modeling of the thin silicon layer thermal conductivity at high temperatures. This paper develops algebraic expressions to account for the reduction in thermal conductivity due to the phonon-boundary scattering for pure and doped silicon layers and presents the experimental data for 50-nm-thick single-crystal silicon layers at high temperatures. The model applies to the temperature range of 300-1000 K for silicon layer thicknesses from 10 nm to 1 mum (and even bulk), which agrees well with the experimental data. In addition, the algebraic model has an excellent agreement with both the experimental data and predictions of thin-film thermal conductivity based on thermal conductivity integral and Boltzmann transport equation. The analytical thermal modeling and ISE-TCAD electrothermal simulations confirm that both the electrical and thermal performances of SOI transistor can be largely affected if the reduced thermal conductivity of the silicon due to phonon boundary scattering is not properly taken into consideration

[1]  Kenneth E. Goodson,et al.  PHONON-BOUNDARY SCATTERING IN THIN SILICON LAYERS , 1997 .

[2]  K. Jenkins,et al.  Measurement of the effect of self-heating in strained-silicon MOSFETs , 2002, IEEE Electron Device Letters.

[3]  M. Asheghi,et al.  Thermal conduction in doped single-crystal silicon films , 2002 .

[4]  Thomas W. Kenny,et al.  INTRINSIC-CARRIER THERMAL RUNAWAY IN SILICON MICROCANTILEVERS , 1999 .

[5]  Shaofeng Yu,et al.  Scalability revisited: 100 nm PD-SOI transistors and implications for 50 nm devices , 2000, 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104).

[6]  Thomas W. Kenny,et al.  Atomic force microscope cantilevers for combined thermomechanical data writing and reading , 2001 .

[7]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[8]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[9]  S. Wong,et al.  Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates , 1996, Microelectromechanical Systems (MEMS).

[10]  Mehdi Asheghi,et al.  Impact of Thermal Sub-Continuum Effects on Electrical Performance of Silicon-on-Insulator Transistors , 2005 .

[11]  P. Klemens,et al.  The thermal conductivity of dielectric solids at low temperatures (Theoretical) , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[13]  M. Asheghi,et al.  Thermal modeling of self-heating in strained-silicon MOSFETs , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[14]  Mehdi Asheghi,et al.  Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers , 2006 .

[15]  Zhiping Yu,et al.  An analytical drain current model considering both electron and lattice temperatures simultaneously for deep submicron ultrathin SOI NMOS devices with self-heating , 1995 .

[16]  W. Redman-White,et al.  Measurement and simulation of self-heating in SOI CMOS analogue circuits , 1997, 1997 IEEE International SOI Conference Proceedings.

[17]  M. M. Pelella,et al.  Physical modeling of temperature dependences of SOI CMOS devices and circuits including self-heating , 1998 .

[18]  R. Berman The thermal conductivity of dielectric solids at low temperatures , 1953 .

[19]  Yu-Chong Tai,et al.  Thermal conductivity of heavily doped low‐pressure chemical vapor deposited polycrystalline silicon films , 1988 .

[20]  M. Asheghi,et al.  Ballistic phonon transport in strained Si/SiGe nanostructures with an application to strained-silicon transistors , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[21]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[22]  L. Weber,et al.  Transport properties of silicon , 1991 .

[23]  G. A. Slack,et al.  Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond , 1964 .

[24]  William Redman-White,et al.  Characterization of layout dependent thermal coupling in SOI CMOS current mirrors , 1996 .

[25]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[26]  L. Wagner,et al.  Transient pass-transistor leakage current in SOI MOSFET's , 1997, IEEE Electron Device Letters.

[27]  H. Nayfeh,et al.  Strained silicon MOSFET technology , 2002, Digest. International Electron Devices Meeting,.

[28]  O. Faynot,et al.  A scalable SOI technology for three successive generations: 0.18, 0.13 and 0.1 /spl mu/m for low-voltage and low-power applications , 1996, 1996 IEEE International SOI Conference Proceedings.

[29]  Werner A. Rausch,et al.  Device and circuit design issues in SOI technology , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[30]  L. T. Su,et al.  Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits , 1995 .

[31]  M. Asheghi,et al.  Thermal conductivity model for thin silicon-on-insulator layers at high temperatures , 2002, 2002 IEEE International SOI Conference.

[32]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .