InAs-based dilute nitride materials and devices for the mid-infrared spectral range

In this work we report on the characterization of InAsNSb dilute nitride alloys and mutli-quantum well structures. InAsN epilayers with room-temperature photoluminescence emission have been successfully grown by MBE on InAs and GaAs substrates. By careful attention to growth conditions, device quality material can be obtained for N contents up to ~3% with band gap reduction which follows the band anti-crossing model. Mid-infrared light-emitting diodes containing ten period InAsNSb/InAs multi-quantum wells within the active region were fabricated. These devices exhibited electroluminescence up to room temperature consistent with e-hh1 and e-lh1 transitions within type I quantum wells in good agreement with calculations. Comparison of the temperature dependence of the EL with that of type II InAsSb/InAs reveals more intense emission at low temperature and an improved temperature quenching up to T~200 K where thermally activated carrier leakage becomes important and further increase in the QW band offsets is needed. This material system shows promise for use in mid-infrared diode lasers and other optoelectronic devices.

[1]  Wladek Walukiewicz,et al.  Band Anticrossing in GaInNAs Alloys , 1999 .

[2]  A. Krier,et al.  Molecular beam epitaxial growth of InAsN:Sb for midinfrared Optoelectronics , 2008 .

[3]  Mark Hopkinson,et al.  Photoluminescence of InNAs alloys: S-shaped temperature dependence and conduction-band nonparabolicity , 2007 .

[4]  A. Krier,et al.  Room temperature photoluminescence at 4.5μm from InAsN , 2008 .

[5]  E. Haller,et al.  Effect of Nitrogen‐Induced Modification of the Conduction Band Structure on Electron Transport in GaAsN Alloys , 1999 .

[6]  O. Drachenko,et al.  Cyclotron resonance mass and Fermi energy pinning in the In(AsN) alloy , 2011 .

[7]  R. Beresford,et al.  Microstructure and composition of InAsN alloys grown by plasma-source molecular beam epitaxy , 1998 .

[8]  Carl R. Pidgeon,et al.  Auger recombination in long-wavelength infrared InNxSb1−x alloys , 2001 .

[9]  A. Krier,et al.  Growth and characterization of InAsN/GaAs dilute nitride semiconductor alloys for the midinfrared spectral range , 2009 .

[10]  H. Cerva,et al.  Morphology and optical properties of InAs(N) quantum dots , 2004 .

[11]  M. Hopkinson,et al.  Electron coherence length and mobility in highly mismatched III-N-V alloys , 2008 .

[12]  M. Henini Dilute nitride semiconductors , 2005 .

[13]  O. Drachenko,et al.  Effect of low nitrogen concentrations on the electronic properties of InAs1-xNx. , 2009 .

[14]  N. Balkan,et al.  S-shaped behaviour of the temperature-dependent energy band gap in dilute nitrides , 2003 .

[15]  Midinfrared InAsSbN/InAs Multiquantum Well Light-Emitting Diodes , 2011 .

[16]  K. Onabe,et al.  MBE growth and photoreflectance study of GaAsN alloy films grown on GaAs [001] , 2003, International Conference on Molecular Bean Epitaxy.

[17]  J. Misiewicz,et al.  Photoreflectance study of the energy gap and spin-orbit splitting in InNAs alloys , 2009 .

[18]  Jean-Christophe Harmand,et al.  Role of nitrogen in the mobility drop of electrons in modulation-doped GaAsN/AlGaAs heterostructures , 2003 .

[19]  K. Köhler,et al.  Bonding of nitrogen in dilute InAsN and high In-content GaInAsN , 2005 .

[20]  C. W. Tu,et al.  Mechanism for low-temperature photoluminescence in GaNAs/GaAs structures grown by molecular-beam epitaxy , 1999 .

[21]  R. Airey,et al.  Hot electron transport and impact ionization in the narrow energy gap InAs1-xNx alloy. , 2010 .

[22]  W. Li,et al.  InGaAsSbN: A dilute nitride compound for midinfrared optoelectronic devices , 2003 .

[23]  Kazuhiko Hosomi,et al.  Gas-Source Molecular Beam Epitaxy of GaNxAs1-x Using a N Radical as the N Source , 1994 .

[24]  J. Misiewicz,et al.  Photoreflectance study of N- and Sb-related modifications of the energy gap and spin-orbit splitting in InNAsSb alloys , 2011 .

[25]  E. O’Reilly,et al.  Unification of the band anticrossing and cluster-state models of dilute nitride semiconductor alloys. , 2004, Physical review letters.

[26]  Xiaodong Yang,et al.  Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers , 1999 .

[27]  Voicu Popescu,et al.  Effective band structure of random alloys. , 2010, Physical review letters.

[28]  M. Osiński InNAs : a new optoelectronic material for mid-infrared applications , 2003 .

[29]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[30]  J. J. Bomphrey,et al.  Controlled nitrogen incorporation in GaNSb alloys , 2011 .

[31]  D. W. Pashley,et al.  Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE , 1989 .

[32]  L. Eaves,et al.  Electron conduction in two-dimensional GaAs 1-y N y channels , 2004 .

[33]  A. Krier,et al.  Photoluminescence of InAs0.926Sb0.063N0.011/InAs multi-quantum wells in the mid-infrared spectral range , 2010 .