Determining Electrical and Heat Transfer Parameters Using Coupled Boundary Measurements

Let $\Omega\subset\R^n$, $n\ge 3$, be a smooth bounded domain and consider a coupled system in $\Omega$ consisting of a conductivity equation $\nabla \cdot \gamma(x) \nabla u(t,x)=0$ and an anisotropic heat equation $\kappa^{-1}(x)\partial_t\psi(t,x)=\nabla\cdot (A(x)\nabla \psi(t,x))+(\gamma\nabla u(t,x))\cdot \nabla u(t,x), \quad t\ge 0$. It is shown that the coefficients $\gamma$, $\kappa$ and $A=(a_{jk})$ are uniquely determined from the knowledge of the boundary map $u|_{\partial\Omega}\mapsto \nu\cdot A\nabla \psi|_{\partial\Omega}$, where $\nu$ is the unit outer normal to $\partial\Omega$. The coupled system models the following physical phenomenon. Given a fixed voltage distribution, maintained on the boundary $\partial\Omega$, an electric current distribution appears inside $\Omega$. The current in turn acts as a source of heat inside $\Omega$, and the heat flows out of the body through the boundary. The boundary measurements above then correspond to the map taking a voltage distribution on the boundary to the resulting heat flow through the boundary. The presented mathematical results suggest a new hybrid diffuse imaging modality combining electrical prospecting and heat transfer-based probing.

[1]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.

[2]  L. O. Svaasand,et al.  Boundary conditions for the diffusion equation in radiative transfer. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Gunther Uhlmann,et al.  Complex geometrical optics solutions for Lipschitz conductivities , 2003 .

[4]  B. CANUTO,et al.  Determining Coefficients in a Class of Heat Equations via Boundary Measurements , 2001, SIAM J. Math. Anal..

[5]  Matti Lassas,et al.  Invisibility and Inverse Problems , 2008, 0810.0263.

[6]  Matti Lassas,et al.  The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary , 2003 .

[7]  Masahiro Yamamoto,et al.  Lipschitz stability in inverse parabolic problems by the Carleman estimate , 1998 .

[8]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[9]  Jacques Chazarain,et al.  Introduction to the theory of linear partial differential equations , 1982 .

[10]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[11]  Matti Lassas,et al.  The Calderon problem for conormal potentials, I: Global uniqueness and reconstruction , 2001 .

[12]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[13]  D. Vassiliev,et al.  MICROLOCAL ANALYSIS FOR DIFFERENTIAL OPERATORS—AN INTRODUCTION (London Mathematical Society Lecture Note Series 196) , 1996 .

[14]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[15]  P. Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[16]  Alain Grigis,et al.  Microlocal Analysis for Differential Operators: An Introduction , 1994 .

[17]  John Sylvester,et al.  A uniqueness theorem for an inverse boundary value problem in electrical prospection , 1986 .

[18]  Frank K. Tittel,et al.  The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues , 1995, Physics in medicine and biology.

[19]  M. Choulli Une introduction aux problèmes inverses elliptiques et paraboliques , 2009 .

[20]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[21]  Bin He,et al.  Investigation on magnetoacoustic signal generation with magnetic induction and its application to electrical conductivity reconstruction , 2007, Physics in medicine and biology.

[22]  Otmar Scherzer,et al.  Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..

[23]  G. Grubb Distributions and Operators , 2008 .

[24]  Alexandru Tamasan,et al.  Conductivity imaging with a single measurement of boundary and interior data , 2007 .

[25]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[26]  Eric Bonnetier,et al.  Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..

[27]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[28]  Matti Lassas,et al.  On determining a Riemannian manifold from the Dirichlet-to-Neumann map , 2001 .

[29]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[30]  M. Lassas,et al.  Inverse Boundary Spectral Problems , 2001 .

[31]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[32]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[33]  Masahiro Yamamoto,et al.  Carleman estimates for parabolic equations and applications , 2009 .

[34]  Habib Ammari,et al.  Mathematical models and reconstruction methods in magneto-acoustic imaging , 2009, European Journal of Applied Mathematics.

[35]  Victor Isakov,et al.  Some inverse problems for the diffusion equation , 1999 .

[36]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[37]  M. Lassas,et al.  Equivalence of time-domain inverse problems and boundary spectral problems , 2002, math/0202225.

[38]  M. Schweiger,et al.  The finite element method for the propagation of light in scattering media: boundary and source conditions. , 1995, Medical physics.

[39]  Ohin Kwon,et al.  Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm , 2002, IEEE Transactions on Biomedical Engineering.

[40]  John Sylvester,et al.  An anisotropic inverse boundary value problem , 1990 .