Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization

A multiple-swarm multiobjective particle swarm optimization (PSO) algorithm, named dynamic multiple swarms in multiobjective PSO, is proposed in which the number of swarms is adaptively adjusted throughout the search process via the proposed dynamic swarm strategy. The strategy allocates an appropriate number of swarms as required to support convergence and diversity criteria among the swarms. Additional novel designs include a PSO updating mechanism to better manage the communication within a swarm and among swarms and an objective space compression and expansion strategy to progressively exploit the objective space during the search process. Comparative study shows that the performance of the proposed algorithm is competitive in comparison to the selected algorithms on standard benchmark problems. In particular, when dealing with test problems with multiple local Pareto fronts, the proposed algorithm is much less computationally demanding. Sensitivity analysis indicates that the proposed algorithm is insensitive to most of the user-specified design parameters.

[1]  Gary G. Yen,et al.  PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[3]  Xiaodong Li,et al.  Enhancing the robustness of a speciation-based PSO , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[4]  Masao Iwamatsu,et al.  Locating All the Global Minima Using Multi-Species Particle Swarm Optimizer: The Inertia Weight and The Constriction Factor Variants , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[5]  Gary G. Yen,et al.  Multiple objective evolutionary algorithm for temporal linguistic rule extraction. , 2005 .

[6]  朱云龙,et al.  Multi-population Cooperative Particle Swarm Optimization , 2005, ECAL.

[7]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[8]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  Gary G. Yen,et al.  A generic framework for constrained optimization using genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[11]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[12]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[13]  Xiaohua Liu,et al.  Solving multi objective optimization problems using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[14]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[15]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[16]  C. Borror Practical Nonparametric Statistics, 3rd Ed. , 2001 .

[17]  Einoshin Suzuki,et al.  Distributed Multi-objective GA for Generating Comprehensive Pareto Front in Deceptive Optimization Problems , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[18]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[19]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[20]  Jianhua Zhang,et al.  Multi-objective Particle Swarm Optimization Based on Minimal Particle Angle , 2005, ICIC.

[21]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[22]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[23]  Andries Petrus Engelbrecht,et al.  Scalability of niche PSO , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[24]  Chang-Hwan Im,et al.  Multimodal function optimization based on particle swarm optimization , 2006, IEEE Transactions on Magnetics.

[25]  Sheng-Wu Xiong,et al.  Parallel strength Pareto multi-objective evolutionary algorithm for optimization problems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[26]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[27]  Mohammed El-Abd,et al.  On The Convergence of Information Exchange Methods in Multiple Cooperating Swarms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[28]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[29]  Antonina Starita,et al.  Particle swarm optimization for multimodal functions: a clustering approach , 2008 .

[30]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[31]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[32]  Peter Y. K. Cheung,et al.  Improved variable ordering of BDDs with novel genetic algorithm , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[33]  Carlos A. Coello Coello,et al.  A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[34]  Masao Iwamatsu Multi-Species Particle Swarm Optimizer for Multimodal Function Optimization , 2006, IEICE Trans. Inf. Syst..

[35]  Andreas Zell,et al.  Parallelization of Multi-objective Evolutionary Algorithms Using Clustering Algorithms , 2005, EMO.

[36]  Dimitris K. Tasoulis,et al.  Vector evaluated differential evolution for multiobjective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[37]  Bernhard Sendhoff,et al.  Voronoi-based estimation of distribution algorithm for multi-objective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[38]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[39]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[40]  Kalyanmoy Deb,et al.  Parallelizing multi-objective evolutionary algorithms: cone separation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[41]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  Gary G. Yen,et al.  Diversity-based Information Exchange among Multiple Swarms in Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[43]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[44]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[45]  Carlos A. Coello Coello,et al.  Alternative techniques to solve hard multi-objective optimization problems , 2007, GECCO '07.

[46]  Gary G. Yen,et al.  Using evolutionary algorithms for defining the sampling policy of complex n-partite networks , 2005, IEEE Transactions on Knowledge and Data Engineering.

[47]  Michael R. Lyu,et al.  A novel adaptive sequential niche technique for multimodal function optimization , 2006, Neurocomputing.

[48]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[49]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[50]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[51]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[52]  Mohammed El-Abd,et al.  Information exchange in multiple cooperating swarms , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[53]  Gary G. Yen,et al.  Rank-density-based multiobjective genetic algorithm and benchmark test function study , 2003, IEEE Trans. Evol. Comput..

[54]  Guochu Chen,et al.  Two Sub-swarms Particle Swarm Optimization Algorithm , 2005, ICNC.

[55]  Yang Yang,et al.  A distributed cooperative coevolutionary algorithm for multiobjective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[56]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.