Large-scale molecular dynamics simulations of normal shock waves in dilute argon

Large-scale molecular dynamics (MD) simulations using the Lennard-Jones potential are performed to study the structure of normal shock waves in dilute argon. Nonperiodic boundary conditions in the flow direction are applied by coupling the MD domain with a two-dimensional finite-volume computational fluid dynamics (CFD) solver to correctly generate the inflow and outflow particle reservoirs. Detailed comparisons are made with direct simulation Monte Carlo (DSMC) solutions using the variable-hard-sphere (VHS) collision model. By performing realistic MD simulations of full shock waves, this article presents a more sensitive evaluation of the VHS model parameters (via temperature and velocity distribution functions) than is possible using available experimental density measurements. In the high temperature range (300–8000 K), where the Chapman–Enskog theory supports the VHS model assumptions, near-perfect agreement between MD and DSMC solutions is demonstrated and inverse shock thickness predictions reproduc...

[1]  Jing Fan,et al.  A generalized soft-sphere model for Monte Carlo simulation , 2002 .

[2]  Holian Modeling shock-wave deformation via molecular dynamics. , 1988, Physical review. A, General physics.

[3]  Harold Grad,et al.  The profile of a steady plane shock wave , 1952 .

[4]  H. Alsmeyer,et al.  Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam , 1976, Journal of Fluid Mechanics.

[5]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[6]  Yoichiro Matsumoto,et al.  Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method , 1999 .

[7]  Berend Smit,et al.  Accelerating Monte Carlo Sampling , 2002 .

[8]  C. Lilley,et al.  Viscosity of argon at temperatures >2000 K from measured shock thickness , 2003 .

[9]  E. P. Muntz,et al.  Molecular velocity distribution functions in an argon normal shock wave at Mach number 7 , 1983 .

[10]  Graeme A. Bird,et al.  Aspects of the Structure of Strong Shock Waves , 1970 .

[11]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[12]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[13]  Xiaobo Nie,et al.  A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow , 2004, Journal of Fluid Mechanics.

[14]  H. Mott-Smith,et al.  The Solution of the Boltzmann Equation for a Shock Wave , 1951 .

[15]  Hassan Hassan,et al.  A generalized hard‐sphere model for Monte Carlo simulation , 1993 .

[16]  Hiroaki Matsumoto,et al.  Variable sphere molecular model for inverse power law and Lennard-Jones potentials in Monte Carlo simulations , 2002 .

[17]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[18]  P. Coveney,et al.  Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  William G. Hoover,et al.  Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics , 1980 .

[20]  Alejandro L. Garcia,et al.  Non‐equilibrium behaviour of equilibrium reservoirs in molecular simulations , 2005 .

[21]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[22]  Stefan Schlamp,et al.  Higher moments of the velocity distribution function in dense-gas shocks , 2007, J. Comput. Phys..

[23]  Hiroaki Matsumoto,et al.  Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard-Jones potential , 1991 .

[24]  Graham V. Candler,et al.  The solution of the Navier-Stokes equations using Gauss-Seidel line relaxation , 1989 .

[25]  Salomons,et al.  Usefulness of the Burnett description of strong shock waves. , 1992, Physical review letters.

[26]  Thomas E. Schwartzentruber,et al.  A hybrid particle-continuum method applied to shock waves , 2006, J. Comput. Phys..

[27]  C. J. Greenshields,et al.  The structure of shock waves as a test of Brenner's modifications to the Navier–Stokes equations , 2006, Journal of Fluid Mechanics.

[28]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[29]  Carlo Cercignani,et al.  The structure of an infinitely strong shock wave , 1999 .

[30]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[31]  Alejandro L. Garcia,et al.  Measurement bias of fluid velocity in molecular simulations , 2004 .

[32]  Thomas E. Schwartzentruber,et al.  A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows , 2007, J. Comput. Phys..

[33]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[34]  Giovanni Russo,et al.  Numerical solutions of the Boltzmann equation: comparison of different algorithms , 2008 .