The multipolar stage and disruptions in neuronal migration

[1]  R. Ramos,et al.  Heterotopia formation in rat but not mouse neocortex after RNA interference knockdown of DCX. , 2006, Cerebral cortex.

[2]  J. Gleeson,et al.  doublecortin-like kinase Functions with doublecortin to Mediate Fiber Tract Decussation and Neuronal Migration , 2006, Neuron.

[3]  C. Walsh,et al.  Genetic Interactions between Doublecortin and Doublecortin-like Kinase in Neuronal Migration and Axon Outgrowth , 2006, Neuron.

[4]  L. Tsai,et al.  Doublecortin-like Kinase Controls Neurogenesis by Regulating Mitotic Spindles and M Phase Progression , 2006, Neuron.

[5]  Christopher A. Ross,et al.  A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development , 2005, Nature Cell Biology.

[6]  P. Skudlarski,et al.  DCDC2 is associated with reading disability and modulates neuronal development in the brain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Snyder,et al.  Two Genes Link Two Distinct Psychoses , 2005, Science.

[8]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[9]  J. Golden,et al.  Genotypically Defined Lissencephalies Show Distinct Pathologies , 2005, Journal of neuropathology and experimental neurology.

[10]  A. Kriegstein Constructing Circuits: Neurogenesis and Migration in the Developing Neocortex , 2005, Epilepsia.

[11]  A. Kriegstein,et al.  LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages , 2005, The Journal of cell biology.

[12]  M. Hatten LIS-less neurons don't even make it to the starting gate , 2005, The Journal of cell biology.

[13]  Li-Huei Tsai,et al.  Nucleokinesis in Neuronal Migration , 2005, Neuron.

[14]  E. Callaway,et al.  Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation , 2005, Journal of Neuroscience Methods.

[15]  C. Walsh,et al.  Reading impairment in the neuronal migration disorder of periventricular nodular heterotopia , 2005, Neurology.

[16]  C. Cepeda,et al.  Pediatric Cortical Dysplasia: Correlations between Neuroimaging, Electrophysiology and Location of Cytomegalic Neurons and Balloon Cells and Glutamate/GABA Synaptic Circuits , 2005, Developmental Neuroscience.

[17]  Aimee L Jackson,et al.  Noise amidst the silence: off-target effects of siRNAs? , 2004, Trends in genetics : TIG.

[18]  Makoto Sato,et al.  Filamin A and FILIP (Filamin A-Interacting Protein) Regulate Cell Polarity and Motility in Neocortical Subventricular and Intermediate Zones during Radial Migration , 2004, The Journal of Neuroscience.

[19]  L. Tsai,et al.  Ndel1 Operates in a Common Pathway with LIS1 and Cytoplasmic Dynein to Regulate Cortical Neuronal Positioning , 2004, Neuron.

[20]  Nobutaka Hirokawa,et al.  Molecular motors in neuronal development, intracellular transport and diseases , 2004, Current Opinion in Neurobiology.

[21]  J. Golden,et al.  Lis1 is necessary for normal non-radial migration of inhibitory interneurons. , 2004, The American journal of pathology.

[22]  C. Cepeda,et al.  Human cortical dysplasia and epilepsy: an ontogenetic hypothesis based on volumetric MRI and NeuN neuronal density and size measurements. , 2004, Cerebral cortex.

[23]  M. Graham,et al.  Multisite phosphorylation of doublecortin by cyclin-dependent kinase 5. , 2004, The Biochemical journal.

[24]  Arnold R Kriegstein,et al.  Patterns of neuronal migration in the embryonic cortex , 2004, Trends in Neurosciences.

[25]  J. Buxbaum,et al.  Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia , 2004, Nature Neuroscience.

[26]  T. Babb,et al.  Mechanisms of epileptogenicity in cortical dysplasias , 2004, Neurology.

[27]  O. Reiner,et al.  DCX, a new mediator of the JNK pathway , 2004, The EMBO journal.

[28]  Tyra G. Wolfsberg,et al.  Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Kriegstein,et al.  Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases , 2004, Nature Neuroscience.

[30]  S. Mcconnell,et al.  Doublecortin Microtubule Affinity Is Regulated by a Balance of Kinase and Phosphatase Activity at the Leading Edge of Migrating Neurons , 2004, Neuron.

[31]  J. Loturco Doublecortin and a Tale of Two Serines , 2004, Neuron.

[32]  R. Vallee,et al.  A role for cytoplasmic dynein and LIS1 in directed cell movement , 2003, The Journal of cell biology.

[33]  R. Ramos,et al.  RNAi reveals doublecortin is required for radial migration in rat neocortex , 2003, Nature Neuroscience.

[34]  John J Rossi,et al.  Approaches for the sequence-specific knockdown of mRNA , 2003, Nature Biotechnology.

[35]  Kazunori Nakajima,et al.  Multipolar Migration: The Third Mode of Radial Neuronal Migration in the Developing Cerebral Cortex , 2003, The Journal of Neuroscience.

[36]  P. Genton,et al.  Mosaic mutations of the LIS1 gene cause subcortical band heterotopia , 2003, Neurology.

[37]  C. Walsh,et al.  Developmental genetic malformations of the cerebral cortex , 2003, Current neurology and neuroscience reports.

[38]  J G Parnavelas,et al.  Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. , 2003, Cerebral cortex.

[39]  A. Goffinet,et al.  The reelin signaling pathway: some recent developments. , 2003, Cerebral cortex.

[40]  C. Walsh,et al.  Periventricular heterotopia associated with chromosome 5p anomalies , 2003, Neurology.

[41]  A. Wynshaw-Boris,et al.  Multiple Dose-Dependent Effects of Lis1 on Cerebral Cortical Development , 2003, The Journal of Neuroscience.

[42]  I. Scheffer,et al.  Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. , 2002, Brain : a journal of neurology.

[43]  Christopher A. Walsh,et al.  Filamin A and Filamin B are co-expressed within neurons during periods of neuronal migration and can physically interact. , 2002, Human molecular genetics.

[44]  C. Walsh,et al.  Doublecortin Is Required in Mice for Lamination of the Hippocampus But Not the Neocortex , 2002, The Journal of Neuroscience.

[45]  Makoto Sato,et al.  Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone , 2002, Nature Cell Biology.

[46]  L. Tsai,et al.  Life is a journey: a genetic look at neocortical development , 2002, Nature Reviews Genetics.

[47]  Arnold R. Kriegstein,et al.  Dividing Precursor Cells of the Embryonic Cortical Ventricular Zone Have Morphological and Molecular Characteristics of Radial Glia , 2002, The Journal of Neuroscience.

[48]  R. Wong,et al.  Ventricle-directed migration in the developing cerebral cortex , 2002, Nature Neuroscience.

[49]  N. Nakatsuji,et al.  Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. , 2001, Developmental biology.

[50]  S. Baraban Epileptogenesis in the Dysplastic Brain: A Revival of Familiar Themes , 2001, Epilepsy currents.

[51]  S. Mcconnell,et al.  Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  H. Tabata,et al.  Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex , 2001, Neuroscience.

[53]  R. Vallee,et al.  LIS1: cellular function of a disease-causing gene. , 2001, Trends in cell biology.

[54]  G. Eichele,et al.  NudE-L, a novel Lis1-interacting protein, belongs to a family of vertebrate coiled-coil proteins , 2001, Mechanisms of Development.

[55]  T. Weissman,et al.  Neurons derived from radial glial cells establish radial units in neocortex , 2001, Nature.

[56]  Jaime Grutzendler,et al.  Two modes of radial migration in early development of the cerebral cortex , 2001, Nature Neuroscience.

[57]  A. Wynshaw-Boris,et al.  A LIS1/NUDEL/Cytoplasmic Dynein Heavy Chain Complex in the Developing and Adult Nervous System , 2000, Neuron.

[58]  L. Tsai,et al.  Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1 , 2000, Nature Cell Biology.

[59]  D. Prince,et al.  Mechanisms underlying epileptogenesis in cortical malformations , 1999, Epilepsy Research.

[60]  S. Anderson,et al.  Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. , 1999, Cerebral cortex.

[61]  Y. Ben-Ari,et al.  Cortical Malformations and Epilepsy: New Insights from Animal Models , 1999, Epilepsia.

[62]  C. Walsh,et al.  Doublecortin Is a Microtubule-Associated Protein and Is Expressed Widely by Migrating Neurons , 1999, Neuron.

[63]  W. Dobyns,et al.  Epilepsy and malformations of the cerebral cortex. , 1999, Neurologia.

[64]  D. Ledbetter,et al.  LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. , 1998, Human molecular genetics.

[65]  J. Hablitz,et al.  Excitability changes in freeze-induced neocortical microgyria , 1998, Epilepsy Research.

[66]  D. Ledbetter,et al.  Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality , 1998, Nature Genetics.

[67]  I. Scheffer,et al.  doublecortin , a Brain-Specific Gene Mutated in Human X-Linked Lissencephaly and Double Cortex Syndrome, Encodes a Putative Signaling Protein , 1998, Cell.

[68]  Y. Berwald‐Netter,et al.  A Novel CNS Gene Required for Neuronal Migration and Involved in X-Linked Subcortical Laminar Heterotopia and Lissencephaly Syndrome , 1998, Cell.

[69]  C. Truwit,et al.  Bilateral periventricular nodular heterotopia with mental retardation and syndactyly in boys: A new X-linked mental retardation syndrome , 1997, Neurology.

[70]  S. Mcconnell,et al.  Postmitotic neurons migrate tangentially in the cortical ventricular zone. , 1997, Development.

[71]  P. Rakic,et al.  Polarity of microtubule assemblies during neuronal cell migration. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. Rakic A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution , 1995, Trends in Neurosciences.

[73]  S. Mcconnell,et al.  Tangential migration of neurons in the developing cerebral cortex. , 1995, Development.

[74]  H. Arai,et al.  Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor , 1994, Nature.

[75]  A. Galaburda Neuroanatomic basis of developmental dyslexia. , 1993, Neurologic clinics.

[76]  D. Morest,et al.  Migration of neuroblasts by perikaryal translocation: Role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla , 1990, The Journal of comparative neurology.

[77]  Edward P. Sayre,et al.  Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain , 1974, Nature.

[78]  J. Gleeson,et al.  Cytoskeletal-associated proteins in the migration of cortical neurons. , 2004, Journal of neurobiology.

[79]  O. Reiner,et al.  LIS1—no more no less , 2002, Molecular Psychiatry.

[80]  C. Walsh,et al.  Human brain malformations and their lessons for neuronal migration. , 2001, Annual review of neuroscience.

[81]  P. Rakic,et al.  Radial unit hypothesis of neocortical expansion. , 2000, Novartis Foundation symposium.

[82]  C. Truwit,et al.  Lissencephaly and other malformations of cortical development: 1995 update. , 1995, Neuropediatrics.