Compact steady-state tokamak performance dependence on magnet and core physics limits

Compact tokamak fusion reactors using advanced high-temperature superconducting magnets for the toroidal field coils have received considerable recent attention due to the promise of more compact devices and more economical fusion energy development. Facilities with combined fusion nuclear science and Pilot Plant missions to provide both the nuclear environment needed to develop fusion materials and components while also potentially achieving sufficient fusion performance to generate modest net electrical power are considered. The performance of the tokamak fusion system is assessed using a range of core physics and toroidal field magnet performance constraints to better understand which parameters most strongly influence the achievable fusion performance. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.

[1]  R. Bell,et al.  Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade , 2018 .

[2]  Jun Ho Yeom,et al.  Design concept of K-DEMO for near-term implementation , 2015 .

[3]  R. D. Stambaugh,et al.  A fusion development facility on the critical path to fusion energy , 2011 .

[4]  C. Neumeyer,et al.  Overview of the physics and engineering design of NSTX upgrade , 2011, IEEE/IPSS Symposium on Fusion Engineering.

[5]  R. E. Bell,et al.  Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas , 2003 .

[6]  Jong-Kyu Park,et al.  Progress in understanding error-field physics in NSTX spherical torus plasmas , 2007 .

[7]  Otto Asunta,et al.  Compact fusion energy based on the spherical tokamak , 2017 .

[8]  Laila A. El-Guebaly,et al.  Fusion nuclear science facilities and pilot plants based on the spherical tokamak , 2016 .

[9]  L. L. Lao,et al.  The resistive wall mode and feedback control physics design in NSTX , 2004 .

[10]  A. W. Morris,et al.  MAST: Results and upgrade activities , 2011, 2011 IEEE/NPSS 24th Symposium on Fusion Engineering.

[11]  E. Schneider,et al.  Fusion-Fission Transmutation Scheme-Efficient Destruction of Nuclear Waste , 2012 .

[12]  Yuesheng Wu,et al.  The ITER magnet systems: progress on construction , 2014 .

[13]  S. Wolfe,et al.  A new look at density limits in tokamaks , 1988 .

[14]  Laila A. El-Guebaly,et al.  Blanket/Materials Testing Strategy for FNSF and Its Breeding Potential , 2015 .

[15]  S. P. Gerhardt,et al.  Exploration of the equilibrium operating space for NSTX-Upgrade , 2012 .

[16]  M. Greenwald Density limits in toroidal plasmas , 2002 .

[17]  L. L. Lao,et al.  Physics Basis of a Fusion Development Facility Utilizing the Tokamak Approach , 2010 .

[18]  R. Bell,et al.  Energy confinement scaling in the low aspect ratio National Spherical Torus Experiment (NSTX) , 2005 .

[19]  J. Lawson,et al.  Progress toward commissioning and plasma operation in NSTX-U , 2015 .

[20]  D. Larbalestier,et al.  Record current density of 344 A mm−2 at 4.2 K and 17 T in CORC® accelerator magnet cables , 2016 .

[21]  M. Podestà,et al.  Overview of MAST results , 2005 .

[22]  David C. Larbalestier,et al.  Engineering current density in excess of 200 A mm−2 at 20 T in CORC® magnet cables containing RE-Ba2Cu3O7−δ tapes with 38 μm thick substrates , 2015 .

[23]  M. Wisse,et al.  Collisionality and safety factor scalings of H-mode energy transport in the MAST spherical tokamak , 2011 .

[24]  J. Manickam,et al.  Advances in global MHD mode stabilization research on NSTX , 2010 .

[25]  A. W. Morris MAST: Results and Upgrade Activities , 2012 .

[26]  K. Tritz,et al.  Confinement and local transport in the National Spherical Torus Experiment (NSTX) , 2007 .

[27]  N. Mitchell,et al.  The ITER Magnet System , 2008, IEEE Transactions on Applied Superconductivity.

[28]  Hubertus W. Weijers,et al.  Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T , 2013 .

[29]  C. C. Petty,et al.  Sizing up plasmas using dimensionless parametersa) , 2006 .

[30]  Graydon L. Yoder,et al.  Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a Component Testing Facility , 2009 .

[31]  John W. Berkery,et al.  The Role of Kinetic Effects, Including Plasma Rotation and Energetic Particles, in Resistive Wall Mode Stability , 2009 .

[32]  Kunihiko Okano,et al.  Review of Strategy Toward DEMO in Japan and Required Innovations , 2018, Journal of Fusion Energy.

[33]  Bondeson,et al.  Stabilization of external modes in tokamaks by resistive walls and plasma rotation. , 1994, Physical review letters.

[34]  E. D. Fredrickson,et al.  A component test facility based on the spherical tokamak , 2005 .

[35]  J. Menard,et al.  Nuclear Aspects and Blanket Testing/Development Strategy for ST-FNSF , 2014, IEEE Transactions on Plasma Science.

[36]  L. L. Lao,et al.  Progress in the physics basis of a Fusion Nuclear Science Facility based on the Advanced Tokamak concept , 2014 .

[37]  Laila A. El-Guebaly,et al.  Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator , 2011 .

[38]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[39]  Gerald A. Navratil,et al.  Modeling of active control of external magnetohydrodynamic instabilities , 2001 .

[40]  R. Bell,et al.  Effect of collisionality on kinetic stability of the resistive wall mode. , 2011, Physical review letters.

[41]  C. S. Chang,et al.  Overview of NSTX Upgrade initial results and modelling highlights , 2017 .

[42]  A. Boozer Stabilization of resistive wall modes by slow plasma rotation , 1995 .

[43]  R. E. Bell,et al.  Investigation of resistive wall mode stabilization physics in high-beta plasmas using applied non-axisymmetric fields in NSTX , 2007 .

[44]  I. T. Chapman,et al.  Toroidal self-consistent modeling of drift kinetic effects on the resistive wall mode , 2008 .

[45]  G. G. Gladush,et al.  Steady-state operation in compact tokamaks with copper coils , 2011 .

[46]  M. Gryaznevich,et al.  Modular fusion power plant , 2017 .

[47]  E. Marriott,et al.  Neutronics Analysis in Support of the Fusion Development Facility Design Evolution , 2011 .

[48]  R. Raman,et al.  Solenoid-free plasma start-up in spherical tokamaks , 2014 .

[49]  R Betti,et al.  Resistive wall mode instability at intermediate plasma rotation. , 2010, Physical review letters.

[50]  L. L. Lao,et al.  Resistive wall stabilized operation in rotating high beta NSTX plasmas , 2006 .

[51]  Laila A. El-Guebaly,et al.  ST-Based Fusion Nuclear Science Facility: Breeding Issues and Challenges of Protecting HTS Magnets , 2017 .

[52]  Mark R. Gilbert,et al.  European DEMO design strategy and consequences for materials , 2017 .

[53]  Mark S. Tillack,et al.  Development of the Lead Lithium (DCLL) Blanket Concept , 2011 .

[54]  Alice Ying,et al.  Results of an International Study on a High-Volume Plasma-Based Neutron Source for Fusion Blanket Development , 1996 .

[55]  D. P. Dautovich,et al.  Pilot plant: An affordable step toward fusion power , 1992 .

[56]  G. Fishpool,et al.  MAST-upgrade divertor facility and assessing performance of long-legged divertors , 2013 .

[57]  P. J. Knight,et al.  Conceptual design of a component test facility based on the spherical tokamak , 2008 .

[58]  J. Manickam,et al.  Ideal MHD stability limits of low aspect ratio tokamak plasmas , 1997 .

[59]  Yueqiang Liu,et al.  Magnetic drift kinetic damping of the resistive wall mode in large aspect ratio tokamaks , 2008 .

[60]  Betti,et al.  Stability analysis of resistive wall kink modes in rotating plasmas. , 1995, Physical review letters.

[61]  L. L. Lao,et al.  Resistive wall mode stabilization of high-β plasmas in the National Spherical Torus Experimenta) , 2005 .

[62]  L. Garzotti,et al.  Scaling of H-mode energy confinement with Ip and BT in the MAST spherical tokamak , 2009 .

[63]  Daniel R. Cohn,et al.  An accelerated fusion power development plan , 1991 .

[64]  P. Bonoli,et al.  ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets , 2014, 1409.3540.

[65]  K. Tritz,et al.  Active stabilization of the resistive-wall mode in high-beta, low-rotation plasmas. , 2006, Physical review letters.

[66]  C. Sborchia,et al.  Design and Specifications of the ITER TF Coils , 2008, IEEE Transactions on Applied Superconductivity.

[67]  H. R. Wilson,et al.  Bootstrap current scaling in tokamaks , 1992 .

[68]  Laila A. El-Guebaly,et al.  TBM/MTM for HTS-FNSF: An Innovative Testing Strategy to Qualify/Validate Fusion Technologies for U.S. DEMO , 2016 .