USING LANDSAT 8 IMAGE TIME SERIES FOR CROP MAPPING IN A REGION OF CERRADO, BRAZIL

Abstract. The objective of this research is to classify agricultural land use in a region of the Cerrado (Brazilian Savanna) biome using a time series of Enhanced Vegetation Index (EVI) from Landsat 8 OLI. Phenological metrics extracted from EVI time series, a Random Forest algorithm and data mining techniques are used in the process of classification. The area of study is a region in the Cerrado in a region of the municipality of Casa Branca, São Paulo state, Brazil. The results are encouraging and demonstrate the potential of phenological parameters obtained from time series of OLI vegetation indices for agricultural land use classification.

[1]  Leila Maria Garcia Fonseca,et al.  Combining Time Series Features and Data Mining to Detect Land Cover patterns: a Case Study in Northern Mato Grosso State, Brazil , 2018, GEOINFO.

[2]  A. Brenning,et al.  Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile , 2015 .

[3]  F. Faria,et al.  SiRCub - Brazilian Agricultural Crop Recognition System. , 2015 .

[4]  Limin Wang,et al.  Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[5]  Soe W. Myint,et al.  A support vector machine to identify irrigated crop types using time-series Landsat NDVI data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[6]  A. J. B. Luiz,et al.  Dinâmica agrícola em área de sobreposição de órbitas adjacentes dos satélites Landsat. , 2015 .

[7]  P. Hostert,et al.  Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape , 2015 .

[8]  Edson Eyji Sano,et al.  SÉRIES TEMPORAIS DE EVI DO MODIS PARA O MAPEAMENTO DE USO E COBERTURA VEGETAL DO OESTE DA BAHIA , 2014 .

[9]  A. C. Coutinho,et al.  METHODOLOGY FOR SYSTEMATICAL MAPPING OF ANNUAL CROPS IN MATO GROSSO DO SUL STATE (BRAZIL) , 2013 .

[10]  Marcos Adami,et al.  MODIS TIME SERIES FOR LAND USE CHANGE DETECTION IN FIELDS OF THE AMAZON SOY MORATORIUM , 2012 .

[11]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[12]  Damien Arvor,et al.  Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil , 2011 .

[13]  J. Esquerdo,et al.  Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil , 2011 .

[14]  T. Mitchell Aide,et al.  A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America , 2010 .

[15]  B. Wardlow,et al.  Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains , 2007 .

[16]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[17]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[18]  Per Jönsson,et al.  TIMESAT - a program for analyzing time-series of satellite sensor data , 2004, Comput. Geosci..

[19]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[20]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[21]  Per Jönsson,et al.  Seasonality extraction by function fitting to time-series of satellite sensor data , 2002, IEEE Trans. Geosci. Remote. Sens..

[22]  D. Legates,et al.  Crop identification using harmonic analysis of time-series AVHRR NDVI data , 2002 .

[23]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .