Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillary effects

We present an interior penalty discontinuous Galerkin scheme for a two-phase porous media flow model that incorporates dynamic effects in the capillary pressure. The approximation of the mass-conservation laws is performed in their original formulation, without introducing a global pressure. We prove the existence of a solution to the emerging fully discrete systems and the convergence of the scheme. Error-estimates are obtained for sufficiently smooth data.

[1]  I. Pop,et al.  A multipoint flux approximation finite volume scheme for two phase porous media flow with dynamic capillarity , 2015 .

[2]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[3]  Christian Rohde,et al.  The computation of nonclassical shock waves with a heterogeneous multiscale method , 2010, Networks Heterog. Media.

[4]  B. Rivière,et al.  Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow , 2009 .

[5]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[6]  David A. DiCarlo,et al.  Experimental measurements of saturation overshoot on infiltration , 2004 .

[7]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[8]  F. Brezzi,et al.  Mathematical models and finite elements for reservoir simulation : single phase, multiphase and multicomponent flows through porous media , 1988 .

[9]  Alexander A. Weiss,et al.  Dynamic capillary effects in heterogeneous porous media , 2007 .

[10]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[11]  I. Pop,et al.  Degenerate two-phase porous media flow model with dynamic capillarity , 2016 .

[12]  William G. Gray,et al.  Thermodynamic basis of capillary pressure in porous media , 1993 .

[13]  Y. Mualem,et al.  A New Model for Predicting the Hydraulic Conductivity , 1976 .

[14]  Peter Bastian,et al.  A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure , 2013, Computational Geosciences.

[15]  Iuliu Sorin Pop,et al.  Travelling wave solutions for degenerate pseudo-parabolic equation modelling two-phase flow in porous media , 2013 .

[16]  R. Helmig Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .

[17]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[18]  F. Radu,et al.  A study on iterative methods for solving Richards’ equation , 2015, Computational Geosciences.

[19]  Mary F. Wheeler,et al.  Symmetric and Nonsymmetric Discontinuous Galerkin Methods for Reactive Transport in Porous Media , 2005, SIAM J. Numer. Anal..

[20]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[21]  Peter Bastian,et al.  Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE) , 2010, Kybernetika.

[22]  Iuliu Sorin Pop,et al.  A class of pseudo‐parabolic equations: existence, uniqueness of weak solutions, and error estimates for the Euler‐implicit discretization , 2011 .

[23]  Y. Mualem,et al.  Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media , 1976 .

[24]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[25]  Raphaèle Herbin,et al.  Mathematical study of a petroleum-engineering scheme , 2003 .

[26]  L. Durlofsky A triangle based mixed finite element–finite volume technique for modeling two phase flow through porous media , 1993 .

[27]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[28]  Jan M. Nordbotten,et al.  Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation , 2011 .

[29]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[30]  Luciane A. Schuh,et al.  Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures , 2010 .

[31]  R. Temam Navier-Stokes Equations , 1977 .

[32]  Andreas Rätz,et al.  Hysteresis models and gravity fingering in porous media , 2014 .

[33]  Florin A. Radu,et al.  Mixed finite element discretization and Newton iteration for a reactive contaminant transport model with nonequilibrium sorption: convergence analysis and error estimates , 2011 .

[34]  G. Burton Sobolev Spaces , 2013 .

[35]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[36]  Zhangxin Chen Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution , 2001 .

[37]  B. Rivière,et al.  Superconvergence and H(div) projection for discontinuous Galerkin methods , 2003 .

[38]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[39]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[40]  Andro Mikelić,et al.  A global existence result for the equations describing unsaturated flow in porous med , 2010 .

[41]  BEN SCHWEIZER,et al.  Two-phase flow equations with a dynamic capillary pressure , 2012, European Journal of Applied Mathematics.

[42]  I. S. Popa,et al.  Degenerate two-phase flow model in porous media including dynamics effects in the capillary pressure : existence of a weak solution , 2015 .

[43]  Iuliu Sorin Pop,et al.  Two-phase porous media flows with dynamic capillary effects and hysteresis: Uniqueness of weak solutions , 2015, Comput. Math. Appl..

[44]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[45]  H. Diersch,et al.  Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 1. Theory , 2010 .

[46]  Jan M. Nordbotten,et al.  A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media , 2015, J. Comput. Appl. Math..

[47]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[48]  N. T. Burdine Relative Permeability Calculations From Pore Size Distribution Data , 1953 .

[49]  I. S. Pop,et al.  Two-Phase Flow in Porous Media: Dynamic Capillarity and Heterogeneous Media , 2016, Transport in Porous Media.

[50]  S. M. Hassanizadeh,et al.  A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media , 2001 .

[51]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..