High-intensity low energy titanium ion implantation into zirconium alloy

[1]  M. Syrtanov,et al.  Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering , 2018 .

[2]  M. Liedke,et al.  Microstructure, defect structure and hydrogen trapping in zirconium alloy Zr-1Nb treated by plasma immersion Ti ion implantation and deposition , 2018 .

[3]  Guo‐Jun Zhang,et al.  Coating SiC on Zircaloy-4 by magnetron sputtering at room temperature , 2018 .

[4]  A. Motta,et al.  The role of hydrogen in zirconium alloy corrosion , 2017 .

[5]  A. Shevelev,et al.  High intensity metal ion beam generation , 2017 .

[6]  Kenta Murakami,et al.  Current status of materials development of nuclear fuel cladding tubes for light water reactors , 2017 .

[7]  Yong Sun,et al.  Effect of oxidation time on the tribological behavior of thermally oxidized commercially pure zirconium under dry sliding conditions , 2017 .

[8]  L. Voleský,et al.  Effect of titanium ion implantation and deposition on hydrogenation behavior of Zr-1Nb alloy , 2016 .

[9]  A. Motta,et al.  Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding , 2016 .

[10]  K. Sun,et al.  Direct observation of hydrogenation and dehydrogenation of a zirconium alloy , 2016 .

[11]  V. Ovcharenko,et al.  Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air , 2015 .

[12]  Xitao Wang,et al.  Effects of ion irradiation on microstructure and properties of zirconium alloys—A review , 2015 .

[13]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[14]  Haiyan Wang,et al.  TiN-based coatings on fuel cladding tubes for advanced nuclear reactors , 2012 .

[15]  A. Wu,et al.  Effects of ion implantation on the brazing properties of high purity alumina , 2012 .

[16]  A. Zieliński,et al.  Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications , 2011 .

[17]  Kyu-Tae Kim,et al.  The study on grid-to-rod fretting wear models for PWR fuel , 2009 .

[18]  Y. Chu,et al.  Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction , 2009 .

[19]  S. Fortuna,et al.  Influence of ion implantation on nanoscale intermetallic-phase formation in Ti–Al, Ni–Al and Ni–Ti systems , 2007 .

[20]  O. Velichko,et al.  Set of equations for transient enhanced diffusion in shallow ion-implanted layers , 2007, 0705.0811.

[21]  Da-yung Wang,et al.  Effects of titanium-implanted pre-treatments on the residual stress of TiN coatings on high-speed steel substrates , 2007 .

[22]  M. Attia On the fretting wear mechanism of Zr-alloys , 2006 .

[23]  X. Bai,et al.  Influence of titanium ions implantation on corrosion behavior of zirconium in 1 M H2SO4 , 2006 .

[24]  S. Banerjee,et al.  Microstructural study of hydride formation in Zr-1Nb alloy , 2003 .

[25]  R. Wei Low energy, high current density ion implantation of materials at elevated temperatures for tribological applications , 1996 .

[26]  R. J. Schultz,et al.  Diffusion of Ti in α-Zr single crystals , 1994 .

[27]  D. Bacon Point defects and clusters in the hcp metals : their role in the dose transition , 1993 .

[28]  J. Poate,et al.  Surface Modification and Alloying: by Laser, Ion, and Electron Beams , 1983 .

[29]  Y. Sohn,et al.  Diffusion in Multicomponent Alloys , 2017 .

[30]  R. Adamson,et al.  Properties of zirconium alloys and their applications in light water reactors (LWRs) , 2013 .