Ferroelastic domain organization and precursor control of size in solution-grown hafnium dioxide nanorods.

We demonstrate that the degree of branching of the alkyl (R) chain in a Hf(OR)4 precursor allows for control over the length of HfO2 nanocrystals grown by homocondensation of the metal alkoxide with a metal halide. An extended nonhydrolytic sol-gel synthesis has been developed that enables the growth of high aspect ratio monoclinic HfO2 nanorods that grow along the [100] direction. The solution-grown elongated HfO2 nanorods show remarkable organization of twin domains separated by (100) coherent twin boundaries along the length of the nanowires in a morphology reminiscent of shape memory alloys. The sequence of finely structured twin domains each spanning only a few lattice planes originates from the Martensitic transformation of the nanorods from a tetragonal to a monoclinic structure upon cooling. Such ferroelastic domain organization is uncharacteristic of metal oxides and has not thus far been observed in bulk HfO2. The morphologies observed here suggest that, upon scaling to nanometer-sized dimensions, HfO2 might exhibit mechanical properties entirely distinctive from the bulk.

[1]  A. Demkov,et al.  Combined experimental and theoretical study of thin hafnia films , 2008 .

[2]  S. Banerjee,et al.  Oriented electrophoretic deposition of GdOCl nanoplatelets. , 2013, The journal of physical chemistry. B.

[3]  T. Antretter,et al.  Size effects on the martensitic phase transformation of NiTi nanograins , 2007 .

[4]  A. Alivisatos,et al.  Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods. , 2013, Nano letters.

[5]  K. Tsuchiya,et al.  Phase Transformations of Nanocrystalline Martensitic Materials , 2009 .

[6]  J. Perez-Mato,et al.  Martensitic phase transition in pure zirconia: a crystal chemistry viewpoint , 2011 .

[7]  Bozhi Tian,et al.  Single crystalline kinked semiconductor nanowire superstructures , 2009, Nature nanotechnology.

[8]  S. Banerjee,et al.  Shape-controlled synthesis of well-defined matlockite LnOCl (Ln: La, Ce, Gd, Dy) nanocrystals by a novel non-hydrolytic approach. , 2011, Inorganic chemistry.

[9]  Brian M. Tissue,et al.  Energy Crossovers in Nanocrystalline Zirconia , 2004 .

[10]  Surface energies and size-effects in shape-memory-alloys , 2004 .

[11]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[12]  Yanhua Zhang,et al.  Diverse structural and magnetic properties of differently prepared MnAs nanoparticles. , 2011, ACS nano.

[13]  R. Scheidecker,et al.  Characterization of metastable tetragonal hafnia , 1979 .

[14]  D. Fischer,et al.  Nonhydrolytic Synthesis and Electronic Structure of Ligand-Capped CeO2−δ and CeOCl Nanocrystals , 2009 .

[15]  S. Banerjee,et al.  Precursor control of crystal structure and stoichiometry in twin metal oxide nanocrystals , 2009 .

[16]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .

[17]  David R. Clarke,et al.  The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends , 2009 .

[18]  K. Kukli,et al.  Crystallization in hafnia‐ and zirconia‐based systems , 2004 .

[19]  R. T. Pascoe,et al.  Ceramic steel? , 1975, Nature.

[20]  Yimei Zhu,et al.  Solid-solution nanoparticles : Use of a nonhydrolytic sol-gel synthesis to prepare HfO2 and HfxZr1-xO2 nanocrystals , 2004 .

[21]  Stephen A. Morin,et al.  A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes , 2010 .

[22]  I. M. Iskandarova,et al.  First-principle investigation of the hydroxylation of zirconia and hafnia surfaces , 2003 .

[23]  Young Woon Kim,et al.  Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. , 2003, Journal of the American Chemical Society.

[24]  David F. Watson,et al.  Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure. , 2011, Journal of hazardous materials.

[25]  M. Mackenzie,et al.  Texture, Twinning, and Metastable “Tetragonal” Phase in Ultrathin Films of HfO2 on a Si Substrate , 2009 .

[26]  M. Steigerwald,et al.  Martensitic Phase Transformation of Isolated HfO2, ZrO2, and HfxZr1 – xO2 (0 < x < 1) Nanocrystals , 2005 .

[27]  Thomas Waitz,et al.  Size-dependent martensitic transformation path causing atomic-scale twinning of nanocrystalline NiTi shape memory alloys , 2005 .

[28]  V. Chikán,et al.  Quantized Ostwald Ripening of Colloidal Nanoparticles , 2010 .

[29]  Jane F. Bertone,et al.  Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions , 1999 .

[30]  A. Navrotsky Nanoscale effects on thermodynamics and phase equilibria in oxide systems. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  Sarbajit Banerjee,et al.  Raman microprobe analysis of elastic strain and fracture in electrophoretically deposited CdSe nanocrystal films. , 2006, Nano letters.

[32]  Robert Hovden,et al.  Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source. , 2011, Nano letters.

[33]  J. K. Dewhurst,et al.  Relative stability of ZrO 2 and HfO 2 structural phases , 1999 .

[34]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[35]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[36]  D. Wilder,et al.  Axial Thermal Expansion of HfO2 , 1972 .

[37]  John Wang,et al.  Hafnia and hafnia-toughened ceramics , 1992, Journal of Materials Science.

[38]  G. M. Wolten Diffusionless Phase Transformations in Zirconia and Hafnia , 1963 .

[39]  A. Saxena,et al.  Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects , 2009 .

[40]  J. Van Humbeeck,et al.  Shape Memory Alloys: A Material and a Technology , 2001 .

[41]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[42]  A. Demkov,et al.  Hafnia: Energetics of thin films and nanoparticles , 2010 .

[43]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[44]  Sarbajit Banerjee,et al.  Microscopic and Nanoscale Perspective of the Metal−Insulator Phase Transitions of VO2: Some New Twists to an Old Tale , 2011 .

[45]  P. Whalen,et al.  Texture and recrystallization on ground surfaces of hafnia , 1990 .

[46]  A. Vioux Nonhydrolytic Sol−Gel Routes to Oxides , 1997 .

[47]  David Vanderbilt,et al.  First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002 .