Ferroelastic domain organization and precursor control of size in solution-grown hafnium dioxide nanorods.
暂无分享,去创建一个
Sarbajit Banerjee | S. Banerjee | Yue-ling Qin | Nicholas D. Cultrara | Nicholas D Cultrara | Sean W. Depner | Sean W Depner | Katie E Farley | Yueling Qin | K. Farley
[1] A. Demkov,et al. Combined experimental and theoretical study of thin hafnia films , 2008 .
[2] S. Banerjee,et al. Oriented electrophoretic deposition of GdOCl nanoplatelets. , 2013, The journal of physical chemistry. B.
[3] T. Antretter,et al. Size effects on the martensitic phase transformation of NiTi nanograins , 2007 .
[4] A. Alivisatos,et al. Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods. , 2013, Nano letters.
[5] K. Tsuchiya,et al. Phase Transformations of Nanocrystalline Martensitic Materials , 2009 .
[6] J. Perez-Mato,et al. Martensitic phase transition in pure zirconia: a crystal chemistry viewpoint , 2011 .
[7] Bozhi Tian,et al. Single crystalline kinked semiconductor nanowire superstructures , 2009, Nature nanotechnology.
[8] S. Banerjee,et al. Shape-controlled synthesis of well-defined matlockite LnOCl (Ln: La, Ce, Gd, Dy) nanocrystals by a novel non-hydrolytic approach. , 2011, Inorganic chemistry.
[9] Brian M. Tissue,et al. Energy Crossovers in Nanocrystalline Zirconia , 2004 .
[10] Surface energies and size-effects in shape-memory-alloys , 2004 .
[11] Lothar Frey,et al. Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.
[12] Yanhua Zhang,et al. Diverse structural and magnetic properties of differently prepared MnAs nanoparticles. , 2011, ACS nano.
[13] R. Scheidecker,et al. Characterization of metastable tetragonal hafnia , 1979 .
[14] D. Fischer,et al. Nonhydrolytic Synthesis and Electronic Structure of Ligand-Capped CeO2−δ and CeOCl Nanocrystals , 2009 .
[15] S. Banerjee,et al. Precursor control of crystal structure and stoichiometry in twin metal oxide nanocrystals , 2009 .
[16] R. Garvie. THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .
[17] David R. Clarke,et al. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends , 2009 .
[18] K. Kukli,et al. Crystallization in hafnia‐ and zirconia‐based systems , 2004 .
[19] R. T. Pascoe,et al. Ceramic steel? , 1975, Nature.
[20] Yimei Zhu,et al. Solid-solution nanoparticles : Use of a nonhydrolytic sol-gel synthesis to prepare HfO2 and HfxZr1-xO2 nanocrystals , 2004 .
[21] Stephen A. Morin,et al. A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes , 2010 .
[22] I. M. Iskandarova,et al. First-principle investigation of the hydroxylation of zirconia and hafnia surfaces , 2003 .
[23] Young Woon Kim,et al. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. , 2003, Journal of the American Chemical Society.
[24] David F. Watson,et al. Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure. , 2011, Journal of hazardous materials.
[25] M. Mackenzie,et al. Texture, Twinning, and Metastable “Tetragonal” Phase in Ultrathin Films of HfO2 on a Si Substrate , 2009 .
[26] M. Steigerwald,et al. Martensitic Phase Transformation of Isolated HfO2, ZrO2, and HfxZr1 – xO2 (0 < x < 1) Nanocrystals , 2005 .
[27] Thomas Waitz,et al. Size-dependent martensitic transformation path causing atomic-scale twinning of nanocrystalline NiTi shape memory alloys , 2005 .
[28] V. Chikán,et al. Quantized Ostwald Ripening of Colloidal Nanoparticles , 2010 .
[29] Jane F. Bertone,et al. Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions , 1999 .
[30] A. Navrotsky. Nanoscale effects on thermodynamics and phase equilibria in oxide systems. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.
[31] Sarbajit Banerjee,et al. Raman microprobe analysis of elastic strain and fracture in electrophoretically deposited CdSe nanocrystal films. , 2006, Nano letters.
[32] Robert Hovden,et al. Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source. , 2011, Nano letters.
[33] J. K. Dewhurst,et al. Relative stability of ZrO 2 and HfO 2 structural phases , 1999 .
[34] Shan X. Wang,et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.
[35] U. Böttger,et al. Ferroelectricity in hafnium oxide thin films , 2011 .
[36] D. Wilder,et al. Axial Thermal Expansion of HfO2 , 1972 .
[37] John Wang,et al. Hafnia and hafnia-toughened ceramics , 1992, Journal of Materials Science.
[38] G. M. Wolten. Diffusionless Phase Transformations in Zirconia and Hafnia , 1963 .
[39] A. Saxena,et al. Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects , 2009 .
[40] J. Van Humbeeck,et al. Shape Memory Alloys: A Material and a Technology , 2001 .
[41] R Ramesh,et al. Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.
[42] A. Demkov,et al. Hafnia: Energetics of thin films and nanoparticles , 2010 .
[43] Younan Xia,et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.
[44] Sarbajit Banerjee,et al. Microscopic and Nanoscale Perspective of the Metal−Insulator Phase Transitions of VO2: Some New Twists to an Old Tale , 2011 .
[45] P. Whalen,et al. Texture and recrystallization on ground surfaces of hafnia , 1990 .
[46] A. Vioux. Nonhydrolytic Sol−Gel Routes to Oxides , 1997 .
[47] David Vanderbilt,et al. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002 .