An assessment of two approaches to variable metric methods

Two recent suggestions in the field of variable metric methods for function minimization are reviewed: the self-scaling method, first introduced by Oren and Luenberger, and the method of Biggs. The two proposals are considered both from a theoretical and computational aspect. They are compared with methods which use correction formulae from the Broyden one-parameter family, in particular the BFGS formula and the Fletcher switching strategy.

[1]  P. Gill,et al.  Quasi-Newton Methods for Unconstrained Optimization , 1972 .

[2]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[3]  M. C. Biggs A Note on Minimization Algorithms which make Use of Non-quardratic Properties of the Objective Function , 1973 .

[4]  M. R. Osborne,et al.  Methods for unconstrained optimization problems , 1968 .

[5]  M. J. D. Powell,et al.  Recent advances in unconstrained optimization , 1971, Math. Program..

[6]  C. G. Broyden Quasi-Newton methods and their application to function minimisation , 1967 .

[7]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[8]  R. Fletcher,et al.  Function Minimization Without Evaluating Derivatives - a Review , 1965, Comput. J..

[9]  D. Luenberger,et al.  Self-Scaling Variable Metric (SSVM) Algorithms , 1974 .

[10]  M. C. Biggs Minimization Algorithms Making Use of Non-quadratic Properties of the Objective Function , 1971 .

[11]  L. Fox,et al.  JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS , 1977 .

[12]  Shmuel S. Oren,et al.  Optimal conditioning of self-scaling variable Metric algorithms , 1976, Math. Program..

[13]  S. Oren SELF-SCALING VARIABLE METRIC (SSVM) ALGORITHMS Part II: Implementation and Experiments*t , 1974 .

[14]  Shmuel S. Oren,et al.  On the selection of parameters in Self Scaling Variable Metric Algorithms , 1974, Math. Program..

[15]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[16]  E. Spedicato A Note on the Determination of the Scaling Parameters in a Class of Quasi-Newton Methods for Unconstrained Minimization , 1978 .

[17]  H. Y. Huang Unified approach to quadratically convergent algorithms for function minimization , 1970 .

[18]  M. J. D. Powell,et al.  An Iterative Method for Finding Stationary Values of a Function of Several Variables , 1962, Comput. J..