Sensing with photonic crystal fibres

Fast, frequent, accurate and reliable measurements of physical quantities such as temperature, stress or strain are known to be of utmost importance in areas such as process industry or structural health monitoring. Photonic crystal fibres (PCF) (Bjarklev et al., 2003) constitute a class of optical fibres that has a large potential for a number of novel applications in the sensing domain. The manufacturing flexibility of PCF allows fabricating different types of specialty microstructured fibres including endlessly single mode, double clad, germanium or rare earth doped, highly birefringent, and many other fibres with particular features. In this paper we analyse several of these and describe how they can be exploited for sensing applications. We pay particular attention to temperature and hydrostatic pressure sensitivities. We also report on new microstructure geometries dedicated to sensing applications and on Bragg gratings written in highly birefringent photonic crystal fibre.

[1]  N. Mortensen,et al.  Polarization maintaining large mode area photonic crystal fiber. , 2004, Optics express.

[2]  Yu. Pogoreltsev,et al.  The Application , 2020, How to Succeed in the Academic Clinical Interview.

[3]  J. P. Carvalho,et al.  Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibres , 2005 .

[4]  T A Birks,et al.  Highly birefringent photonic crystal fibers. , 2000, Optics letters.

[5]  W. Peng,et al.  Random-hole optical fiber evanescent-wave gas sensing. , 2004, Optics letters.

[6]  John Canning,et al.  Temperature independent highly birefringent photonic crystal fibre. , 2004, Optics express.

[7]  Wojtek J. Bock,et al.  Influence of temperature on birefringence and polarization mode dispersion in photonic crystal holey fibers , 2002, Proceedings of 2002 4th International Conference on Transparent Optical Networks (IEEE Cat. No.02EX551).

[8]  R. Osgood,et al.  Elliptical-hole photonic crystal fibers. , 2001, Optics letters.

[9]  Edward Nowinowski-Kruszelnicki,et al.  Propagation properties of photonic crystal fibers filled with nematic liquid crystals , 2005 .

[10]  Robert S. Windeler,et al.  Microstructured optical fibre with tunable birefringence , 2002 .

[11]  Anders Bjarklev,et al.  Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.

[12]  N. Gisin,et al.  Experimental study of polarization properties of highly birefringent photonic crystal fibers. , 2004, Optics express.

[13]  B. Eggleton,et al.  Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. , 2002, Optics express.

[14]  Albert Ferrando,et al.  Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers , 2001 .

[15]  Changxi Yang,et al.  Polarization splitter based on photonic crystal fibers. , 2003, Optics express.

[16]  J. Broeng,et al.  Photonic crystal fibers , 2003, Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678).

[17]  Shin-Tson Wu,et al.  Electrically tunable liquid-crystal photonic crystal fiber , 2004 .

[18]  John A. Rogers,et al.  Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber , 2002 .

[19]  T. Erdogan Fiber grating spectra , 1997 .

[20]  W. Jin,et al.  Design and modeling of a photonic crystal fiber gas sensor. , 2003, Applied optics.

[21]  R. Buczyński Photonic Crystal Fibers , 2004 .

[22]  Brian Joseph Mangan,et al.  Two-dimensional bend sensing with a single, multi-core optical fibre , 2000 .

[23]  Min Gu,et al.  Microfluidic tunable photonic band-gap device , 2004 .

[24]  J. Broeng,et al.  Highly birefringent index-guiding photonic crystal fibers , 2001, IEEE Photonics Technology Letters.

[25]  Francis Berghmans,et al.  Sensitivity of highly birefringent photonic bandgap fibers to temperature and strain , 2005, International Conference on Optical Fibre Sensors.

[26]  Wojtek J. Bock,et al.  Measurements of sensitivity of the single-mode photonic crystal holey fibre to temperature, elongation and hydrostatic pressure , 2004 .

[27]  Do-Hyun Kim,et al.  Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. , 2004, Optics express.

[28]  S Hancocks,et al.  I go to a friend , 2001, British dental journal.

[29]  Chao Lu,et al.  Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization , 2004, IEEE Photonics Technology Letters.

[30]  Charles Kerbage,et al.  Microstructured Optical Fibers , 2002 .

[31]  J. Canning,et al.  Strain and temperature characterization of photonic crystal fiber Bragg gratings. , 2005, Optics letters.

[32]  Felicity Cox,et al.  Fabrication and study of microstructured optical fibers with elliptical holes. , 2004, Optics letters.

[33]  K. Saitoh,et al.  Single-polarization single-mode photonic crystal fibers , 2003, IEEE Photonics Technology Letters.

[34]  Jean-Marc Blondy,et al.  Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement , 2006 .

[35]  M.S. Demokan,et al.  Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror , 2004, IEEE Photonics Technology Letters.

[36]  A. Bjarklev,et al.  Gas sensing using air-guiding photonic bandgap fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[37]  S. Kawanishi,et al.  Absolutely single polarization photonic crystal fiber , 2004, IEEE Photonics Technology Letters.

[38]  B. Eggleton,et al.  Application of an ARROW model for designing tunable photonic devices. , 2004, Optics express.

[39]  David J. Richardson,et al.  Sensing with microstructured optical fibres , 2001 .

[40]  Tadeusz Martynkien,et al.  Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain , 2004 .

[41]  Jun Li,et al.  All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. , 2004, Optics express.

[42]  K. Hill,et al.  Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication , 1978 .

[43]  X. Bao,et al.  Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber. , 2004, Optics letters.

[44]  Brian Joseph Mangan,et al.  Experimental study of dual-core photonic crystal fibre , 2000 .

[45]  K. Hill,et al.  Fiber Bragg grating technology fundamentals and overview , 1997 .

[46]  J. Jensen,et al.  Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[47]  Nicolas Gisin,et al.  Polarization-mode dispersion of large mode-area photonic crystal fibers , 2003 .

[48]  Yan Li,et al.  Conditions for higher-order resonant modes to be excited in a photonic-crystal fiber Bragg grating , 2006 .

[49]  Michael J. Steel,et al.  Polarization and dispersive properties of elliptical-hole photonic crystal fibers , 2001 .

[50]  John M. Fini,et al.  Microstructure fibres for optical sensing in gases and liquids , 2004 .

[51]  T. Strasser,et al.  Grating resonances in air-silica microstructured optical fibers. , 1999, Optics letters.

[52]  S. Kawanishi,et al.  Optical properties of a low-loss polarization-maintaining photonic crystal fiber. , 2001, Optics express.

[53]  Wei Jin,et al.  Evanescent-wave gas sensing using microstructure fiber , 2002 .

[54]  John Canning,et al.  Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers. , 2006, Optics letters.

[55]  D. Richardson,et al.  Developing holey fibres for evanescent field devices , 1999 .

[56]  Brian Joseph Mangan,et al.  Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre , 2001 .

[57]  Zhaoming Zhu,et al.  Stress-induced birefringence in microstructured optical fibers. , 2003, Optics letters.

[58]  T A Birks,et al.  Structural rocking filters in highly birefringent photonic crystal fiber. , 2003, Optics letters.

[59]  J. Rogers Tunable microfluidic optical fiber , 2002, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[60]  Wojtek J. Bock,et al.  Temperature sensitivity of photonic crystal holey fibers , 2003, Optical Fibers and Their Applications.

[61]  R. Kashyap Fiber Bragg Gratings , 1999 .