暂无分享,去创建一个
[1] D. Peterseim,et al. Stable Multiscale Petrov-Galerkin Finite Element Method for High Frequency Acoustic Scattering , 2015, 1503.04948.
[2] H. Owhadi,et al. Metric‐based upscaling , 2007 .
[3] Ralf Kornhuber,et al. Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..
[4] P. Henning,et al. Numerical homogenization beyond scale separation , 2021, Acta Numerica.
[5] Daniel Peterseim,et al. Multi-resolution Localized Orthogonal Decomposition for Helmholtz problems , 2021, ArXiv.
[6] Houman Owhadi,et al. Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..
[7] J. Galkowski,et al. Pointwise Bounds for Steklov Eigenfunctions , 2016, The Journal of Geometric Analysis.
[8] A. Målqvist,et al. Numerical Homogenization by Localized Orthogonal Decomposition , 2020 .
[9] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[10] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[11] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[12] Stephen J. Wright,et al. Randomized Sampling for Basis Function Construction in Generalized Finite Element Methods , 2018, Multiscale Model. Simul..
[13] H. Owhadi,et al. Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.
[14] John E. Osborn,et al. Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..
[15] Giles Auchmuty,et al. Steklov Eigenproblems and the Representation of Solutions of Elliptic Boundary Value Problems , 2005 .
[16] Thomas Y. Hou,et al. Exponential Convergence for Multiscale Linear Elliptic PDEs via Adaptive Edge Basis Functions , 2021, Multiscale Modeling & Simulation.
[17] Houman Owhadi,et al. Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..
[18] P. Hislop,et al. Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in R d , 2001 .
[19] Susanne C. Brenner,et al. Additive Schwarz preconditioners for a localized orthogonal decomposition method , 2021, ETNA - Electronic Transactions on Numerical Analysis.
[20] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[21] H. Owhadi,et al. Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.
[22] Robert Lipton,et al. Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..
[23] Houman Owhadi,et al. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization , 2019 .
[24] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[25] Roland Maier,et al. A high-order approach to elliptic multiscale problems with general unstructured coefficients , 2020, SIAM J. Numer. Anal..
[26] Ralf Kornhuber,et al. An analysis of a class of variational multiscale methods based on subspace decomposition , 2016, Math. Comput..
[27] David A. Sher,et al. Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[28] Daniel Peterseim,et al. Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..
[29] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[30] Stefan A. Sauter,et al. The AL Basis for the Solution of Elliptic Problems in Heterogeneous Media , 2012, Multiscale Model. Simul..