Super-localization of elliptic multiscale problems

Numerical homogenization aims to efficiently and accurately approximate the solution space of an elliptic partial differential operator with arbitrarily rough coefficients in a d-dimensional domain. The application of the inverse operator to some standard finite element space defines an approximation space with uniform algebraic approximation rates with respect to the mesh size parameter H. This holds even for under-resolved rough coefficients. However, the true challenge of numerical homogenization is the localized computation of a localized basis for such an operator-dependent approximate solution space. This paper presents a novel localization technique that enforces the super-exponential decay of the basis relative to H. This shows that basis functions with supports of width O(H| logH|(d−1)/d) are sufficient to preserve the optimal algebraic rates of convergence in H without pre-asymptotic effects. A sequence of numerical experiments illustrates the significance of the new localization technique when compared to the so far best localization to supports of width O(H| logH|).

[1]  D. Peterseim,et al.  Stable Multiscale Petrov-Galerkin Finite Element Method for High Frequency Acoustic Scattering , 2015, 1503.04948.

[2]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[3]  Ralf Kornhuber,et al.  Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..

[4]  P. Henning,et al.  Numerical homogenization beyond scale separation , 2021, Acta Numerica.

[5]  Daniel Peterseim,et al.  Multi-resolution Localized Orthogonal Decomposition for Helmholtz problems , 2021, ArXiv.

[6]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[7]  J. Galkowski,et al.  Pointwise Bounds for Steklov Eigenfunctions , 2016, The Journal of Geometric Analysis.

[8]  A. Målqvist,et al.  Numerical Homogenization by Localized Orthogonal Decomposition , 2020 .

[9]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  Stephen J. Wright,et al.  Randomized Sampling for Basis Function Construction in Generalized Finite Element Methods , 2018, Multiscale Model. Simul..

[13]  H. Owhadi,et al.  Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.

[14]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[15]  Giles Auchmuty,et al.  Steklov Eigenproblems and the Representation of Solutions of Elliptic Boundary Value Problems , 2005 .

[16]  Thomas Y. Hou,et al.  Exponential Convergence for Multiscale Linear Elliptic PDEs via Adaptive Edge Basis Functions , 2021, Multiscale Modeling & Simulation.

[17]  Houman Owhadi,et al.  Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..

[18]  P. Hislop,et al.  Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in R d , 2001 .

[19]  Susanne C. Brenner,et al.  Additive Schwarz preconditioners for a localized orthogonal decomposition method , 2021, ETNA - Electronic Transactions on Numerical Analysis.

[20]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[21]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[22]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[23]  Houman Owhadi,et al.  Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization , 2019 .

[24]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[25]  Roland Maier,et al.  A high-order approach to elliptic multiscale problems with general unstructured coefficients , 2020, SIAM J. Numer. Anal..

[26]  Ralf Kornhuber,et al.  An analysis of a class of variational multiscale methods based on subspace decomposition , 2016, Math. Comput..

[27]  David A. Sher,et al.  Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[28]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[29]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[30]  Stefan A. Sauter,et al.  The AL Basis for the Solution of Elliptic Problems in Heterogeneous Media , 2012, Multiscale Model. Simul..