New Parameterized Algorithms for the Edge Dominating Set Problem

An edge dominating set of a graph G = (V, E) is a subset M ⊆ E of edges in the graph such that each edge in E - M is incident with at least one edge in M. In an instance of the parameterized edge dominating set problem we are given a graph G = (V, E) and an integer k and we are asked to decide whether G has an edge dominating set of size at most k. In this paper we show that the parameterized edge dominating set problemcan be solved in O*(2.3147k) time and polynomial space. We also show that this problem can be reduced to a quadratic kernel with O(k3) edges.

[1]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[2]  Mingyu Xiao A Simple and Fast Algorithm for Maximum Independent Set in 3-Degree Graphs , 2010, WALCOM.

[3]  Henning Fernau,et al.  edge dominating set: Efficient Enumeration-Based Exact Algorithms , 2006, IWPEC.

[4]  Hiroshi Nagamochi,et al.  Parameterized Edge Dominating Set in Cubic Graphs - (Extended Abstract) , 2011, FAW-AAIM.

[5]  J. Moon,et al.  On cliques in graphs , 1965 .

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Hans L. Bodlaender,et al.  Exact Algorithms for Edge Domination , 2008, IWPEC.

[8]  Fedor V. Fomin,et al.  On Two Techniques of Combining Branching and Treewidth , 2009, Algorithmica.

[9]  Elena Prieto Rodríguez,et al.  SYSTEMATIC KERNELIZATION IN FPT ALGORITHM DESIGN , 2005 .

[10]  Hiroshi Nagamochi,et al.  A 2-approximation algorithm for the minimum weight edge dominating set problem , 2002, Discret. Appl. Math..

[11]  Mingyu Xiao Exact and Parameterized Algorithms for Edge Dominating Set in 3-Degree Graphs , 2010, COCOA.

[12]  Saket Saurabh,et al.  Efficient Exact Algorithms through Enumerating Maximal Independent Sets and Other Techniques , 2007, Theory of Computing Systems.

[13]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[14]  Henning Fernau,et al.  Enumerate and Measure: Improving Parameter Budget Management , 2010, IPEC.

[15]  Jean Cardinal,et al.  Improved approximation bounds for edge dominating set in dense graphs , 2009, Theor. Comput. Sci..