Homogeneous hydride formation path in α-Zr: Molecular dynamics simulations with the charge-optimized many-body potential

Abstract A path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1 3 〈 1 1 ¯ 00 〉 slip on the basal plane, and transforms into a mixture of γ hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. This formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.

[1]  Manfred P. Puls,et al.  The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components , 2012 .

[2]  Christophe Domain,et al.  Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties , 2002 .

[3]  Susan B. Sinnott,et al.  Charge optimized many-body potential for the Si/SiO2 system , 2007 .

[4]  P. A. Burr,et al.  Hydrogen accommodation in Zr second phase particles: Implications for H pick-up and hydriding of Zircaloy-2 and Zircaloy-4 , 2013, 1307.7616.

[5]  M. Daymond,et al.  Evaluating zirconium–zirconium hydride interfacial strains by nano-beam electron diffraction , 2013 .

[6]  S. J. Liu,et al.  Interatomic potentials and atomistic calculations of some metal hydride systems , 2002 .

[7]  Arthur T. Motta,et al.  Hydride Formation in Zirconium Alloys , 2012, JOM.

[8]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[9]  Bryan M. Wong,et al.  H in α-Zr and in zirconium hydrides: solubility, effect on dimensional changes, and the role of defects , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  J. Bair,et al.  A review on hydride precipitation in zirconium alloys , 2015 .

[11]  S. S. Sidhu,et al.  NEUTRON AND X-RAY DIFFRACTION STUDIES OF NONSTOICHIOMETRIC METAL HYDRIDES , 1963 .

[12]  Ludovic Thuinet,et al.  Ab initio study of competitive hydride formation in zirconium alloys , 2012 .

[13]  Konings Rudy,et al.  Corrosion of Zirconium Alloys , 1964 .

[14]  A. W. Thompson,et al.  Effect of hydrogen on behavior of materials , 1976 .

[15]  J. J. Kearns TERMINAL SOLUBILITY AND PARTITIONING OF HYDROGEN IN THE ALPHA PHASE OF ZIRCONIUM, ZIRCALOY-2, AND ZIRCALOY-4. , 1967 .

[16]  Rongshan Wang,et al.  First-Principles Study of Different Polymorphs of Crystalline Zirconium Hydride , 2010 .

[17]  H. Abe,et al.  In Situ TEM Observation of Growth Process of Zirconium Hydride in Zircaloy-4 during Hydrogen Ion Implantation , 2009 .

[18]  T. Kubo,et al.  Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures , 2013 .

[19]  Tao Liang,et al.  Variable charge reactive potential for hydrocarbons to simulate organic-copper interactions. , 2012, The journal of physical chemistry. A.

[20]  Farkas,et al.  Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. , 1996, Physical review. B, Condensed matter.

[21]  Huajian Gao,et al.  Deformation gradients for continuum mechanical analysis of atomistic simulations , 2009 .

[22]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[23]  T. Liang,et al.  Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials , 2014 .

[24]  G.J.C Carpenter,et al.  The precipitation of γ-zirconium hydride in zirconium , 1978 .

[25]  P. Burr,et al.  The thermodynamics of hydride precipitation: The importance of entropy, enthalpy and disorder , 2014, 1401.5637.

[26]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[27]  Digby D. Macdonald,et al.  Thermodynamics of the Zr–H binary system related to nuclear fuel sheathing and pressure tube hydriding , 2012 .

[28]  A. Tokuhiro,et al.  Oxidation and hydrogen uptake in zirconium, Zircaloy-2 and Zircaloy-4: Computational thermodynamics and ab initio calculations , 2014 .

[29]  Y. Fukai The Metal-Hydrogen System , 2005 .

[30]  J. Kozinski,et al.  Intergranular δ-hydride nucleation and orientation in zirconium alloys , 2011 .

[31]  L. Legras,et al.  Identification and characterization of a new zirconium hydride , 2008, Journal of microscopy.

[32]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[33]  Toyoshi Fuketa,et al.  Ab initio study on plane defects in zirconium–hydrogen solid solution and zirconium hydride , 2010 .

[34]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[35]  Alexandre Legris,et al.  Hexagonal-based ordered phases in H-Zr , 2009 .

[36]  J. Abriata,et al.  The H-Zr (hydrogen-zirconium) system , 1990 .