Clarification about Component Mode Synthesis Methods for Substructures with Physical Flexible Interfaces

The objective of the paper is to clarify a methodology based on the use of the existing component mode synthesis methods for the case of two damped substructures which are coupled through a linking viscoelastic flexible substructure and for which the structural modes with free geometrical interface are used for each main substructure. The proposed methodology corresponds to a convenient alternative to the direct use either of the Craig-Bampton method applied to the three substructures (using the fixed geometric interface modes) or of the flexibility residual approaches initiated by MacNeal (using the free geometric interface modes). In opposite to a geometrical interface which is a topological interface on which there is a direct linkage between the degrees of freedom of substructures, we consider a physical flexible interface which exists in certain present technologies and for which the general framework linear viscoelasticity is used and yields a frequency-dependent damping and stiffness matrices of the physical flexible interface.

[1]  Zheng-Shan Liu,et al.  Iterative-Order-Reduction Substructuring Method for Dynamic Condensation of Finite Element Models , 2011 .

[2]  Colin A. Taylor,et al.  Adaptive Control Strategy for Dynamic Substructuring Tests , 2007 .

[3]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[4]  Noureddine Bouhaddi,et al.  Component mode synthesis (CMS) based on an enriched ritz approach for efficient structural optimization , 2006 .

[5]  Klaus-Jürgen Bathe,et al.  On nonlinear dynamic analysis using substructuring and mode superposition , 1981 .

[6]  D. Rixen,et al.  Generalized Methodology for Assembly and Reduction of Component Models for Dynamic Substructuring , 2011 .

[7]  Christian Soize,et al.  Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model , 2003 .

[8]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[9]  Aldo A. Ferri,et al.  Probabilistic component mode synthesis of nondeterministic substructures , 1996 .

[10]  C. Pierre,et al.  Characteristic Constraint Modes for Component Mode Synthesis , 2001 .

[11]  Andrew J. Kurdila,et al.  『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.

[12]  Christian Soize,et al.  Structural Acoustics and Vibration , 2001 .

[13]  H. J. M. Geijselaers,et al.  Dynamic substructuring and reanalysis methods in a surrogate-based design optimization environment , 2012 .

[14]  Long Chen FINITE ELEMENT METHOD , 2013 .

[15]  Christophe Pierre,et al.  BASEBAND METHODS OF COMPONENT MODE SYNTHESIS FOR NON-PROPORTIONALLY DAMPED SYSTEMS , 2003 .

[16]  Jorn S. Hansen,et al.  Substructure Synthesis Method for Frequency Response of Viscoelastic Structures , 1995 .

[17]  J. Kirkhope,et al.  Complex component mode synthesis for damped systems , 1995 .

[18]  W. A. Benfield,et al.  Vibration Analysis of Structures by Component Mode Substitution , 1971 .

[19]  Roy R. Craig,et al.  Generalized Substructure Coupling Procedure for Damped Systems , 1982 .

[20]  Daniel Nelias,et al.  Optimal component mode synthesis for medium frequency problem , 2011 .

[21]  Antonio Paulo Vale Urgueira,et al.  Dynamic analysis of coupled structures using experimental data , 1990 .

[22]  R. Craig A review of time-domain and frequency-domain component mode synthesis method , 1985 .

[23]  J. S. Przemieniecki Matrix Structural Analysis of Substructures , 1963 .

[24]  Michael L. Tinker,et al.  Residual flexibility test method for verification of constrained structural models , 1992 .

[25]  Daniel C. Kammer,et al.  Comparison of the Craig-Bampton and residual flexibility methods of substructure representation , 1987 .

[26]  J. Sanchez Hubert,et al.  Vibration and Coupling of Continuous Systems: Asymptotic Methods , 1989 .

[27]  Asa Fenander,et al.  Modal synthesis when modeling damping by use of fractional derivatives , 1996 .

[28]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[29]  Daniel J. Inman,et al.  Reduced-Order Models of Structures with Viscoelastic Components , 1999 .

[30]  Christian Soize,et al.  Dynamic Substructuring of Damped Structures Using Singular Value Decomposition , 1997 .

[31]  D. Bland,et al.  The Theory of Linear Viscoelasticity , 2016 .

[32]  Gregory M. Hulbert,et al.  Calculation of Component Mode Synthesis Matrices From Measured Frequency Response Functions, Part 2: Application , 1995 .

[33]  Stefan Dieker,et al.  Flexible Boundary Method in Dynamic Substructure Techniques Including Different Component Damping , 2010 .

[34]  Daniel Rixen,et al.  Updating component reduction bases of static and vibration modes using preconditioned iterative techniques , 2013 .

[35]  Timothy P. Waters,et al.  Component mode synthesis as a framework for uncertainty analysis , 2009 .

[36]  Charbel Farhat,et al.  An Online Method for Interpolating Linear Parametric Reduced-Order Models , 2011, SIAM J. Sci. Comput..

[37]  Jia-Ying Tu,et al.  Dynamics, control and real-time issues related to substructuring techniques: application to the testing of isolated structure systems , 2013, J. Syst. Control. Eng..

[38]  Matthew S. Allen,et al.  Experimental modal substructuring to estimate fixed-base modes from tests on a flexible fixture , 2011 .

[39]  Pol D. Spanos,et al.  Nonlinear Dynamics of Structures Via Residual Flexibility of Components , 1997 .

[40]  Christian Soize,et al.  Nonparametric stochastic modeling of structures with uncertain boundary conditions / coupling between substructures , 2013 .

[41]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[42]  Christian Soize,et al.  Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification , 2012 .

[43]  L. G. Jaeger,et al.  Dynamics of structures , 1990 .

[44]  Earl H. Dowell,et al.  Analysis of Modal Damping by Component Modes Method Using Lagrange Multipliers , 1974 .

[45]  W. Hurty Dynamic Analysis of Structural Systems Using Component Modes , 1965 .

[46]  Christian Soize,et al.  Dynamic Substructuring in the Medium-Frequency Range , 2000 .

[47]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[48]  Roger Ghanem,et al.  A substructure approach for the midfrequency vibration of stochastic systems. , 2003, The Journal of the Acoustical Society of America.

[49]  David A. Robb,et al.  A new approach to modal-based structural dynamic model updating and joint identification , 1995 .

[50]  E. S. Palencia,et al.  Vibration and Coupling of Continuous Systems , 1989 .

[51]  Singiresu S Rao,et al.  Optimal Structural Control by Substructure Synthesis , 2000 .

[52]  Andrew Y. T. Leung,et al.  Dynamic Stiffness and Substructures , 1993 .

[53]  L. Suárez,et al.  Improved Fixed Interface Method for Modal Synthesis , 1992 .

[54]  Leonard Meirovitch,et al.  Computational Methods in Structural Dynamics , 1980 .

[55]  Christian Soize,et al.  Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes , 2011 .

[56]  Frédéric Bourquin,et al.  Numerical study of an intrinsic component mode synthesis method , 1992 .

[57]  Edward J. Kuhar,et al.  Dynamic Transformation Method for Modal Synthesis , 1974 .

[58]  Ren-Jye Yang,et al.  Component mode synthesis-based design optimization method for local structural modification , 1995 .

[59]  David Gorsich,et al.  Parametric reduced-order models for predicting the vibration response of complex structures with component damage and uncertainties , 2011 .

[60]  Peter J. Chen,et al.  Theory of viscoelasticity, plasticity, elastic waves, and elastic stability , 1984 .

[61]  R. Macneal A hybrid method of component mode synthesis , 1971 .

[62]  Nils-Erik Hörlin,et al.  Component Mode Synthesis Using Undeformed Interface Coupling Modes to Connect Soft and Stiff Substructures , 2013 .

[63]  Christian Soize,et al.  Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle , 2011 .

[64]  S. N. Voormeeren,et al.  General Framework forDynamic Substructuring : History , Review , and Classi fi cation of Techniques , 2008 .

[65]  Walter C. Hurty,et al.  Vibrations of Structural Systems by Component Mode Synthesis , 1960 .

[66]  D. J. Ewins,et al.  Substructure synthesis via elastic media. Part I : Joint identification , 2000 .

[67]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[68]  A. L. Hale,et al.  A Procedure for Improving Discrete Substructure Representation in Dynamic Synthesis , 1982 .

[69]  L. Meirovitch,et al.  Rayleigh-Ritz Based Substructure Synthesis for Flexible Multibody Systems , 1991 .

[70]  A. P,et al.  Mechanical Vibrations , 1948, Nature.

[71]  Christian Soize,et al.  Advanced Computational Vibroacoustics: Reduced-Order Computational Model , 2014 .

[72]  Duc-Minh Tran,et al.  Component mode synthesis methods using partial interface modes: Application to tuned and mistuned structures with cyclic symmetry , 2009 .

[73]  D. Rixen,et al.  General Framework for Dynamic Substructuring: History, Review and Classification of Techniques , 2008 .

[74]  J. H. Argyris,et al.  The Analysis of Fuselages of Arbitrary Cross‐section and Taper: A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer , 1961 .

[75]  Mehran Mirshams,et al.  Pyramidal reaction wheel arrangement optimization of satellite attitude control subsystem for minimizing power consumption , 2014 .

[76]  A. L. Hale,et al.  On the Substructure Synthesis Method , 1981 .

[77]  R. Ohayon,et al.  Substructure variational analysis of the vibrations of coupled fluid–structure systems. Finite element results , 1979 .

[78]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[79]  E. Wilson,et al.  Numerical Methods in Finite Element , 1976 .

[80]  G. T. Zheng,et al.  Improved Component-Mode Synthesis for Nonclassically Damped Systems , 2008 .

[81]  Christian Soize,et al.  Variational-Based Reduced-Order Model in Dynamic Substructuring of Coupled Structures Through a Dissipative Physical Interface: Recent Advances , 2014 .

[82]  Etienne Balmes,et al.  Optimal Ritz vectors for component mode synthesis using the singular value decomposition , 1996 .

[83]  Damijan Markovic,et al.  Reduction of substructural interface degrees of freedom in flexibility‐based component mode synthesis , 2007 .

[84]  Yong-hwa Park,et al.  Partitioned Component Mode Synthesis via a Flexibility Approach , 2004 .

[85]  Matthew S. Allen,et al.  Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections , 2010 .

[86]  A. Majed,et al.  Improved Method of Mixed-Boundary Component-Mode Representation for Structural Dynamic Analysis , 2005 .

[87]  D. Rixen A dual Craig-Bampton method for dynamic substructuring , 2004 .

[88]  Sunil Saigal,et al.  Design sensitivity analysis of boundary element substructures , 1990 .

[89]  Louis Jezequel,et al.  A hybrid method of modal synthesis using vibration tests , 1985 .

[90]  B. N. Agrawal,et al.  Mode synthesis technique for dynamic analysis of structures , 1976 .

[91]  George W. Housner Dynamics of structures, Ray W. Clough and Joseph Penzien, McGraw-Hill, 1975, 634 pages, $21.50 , 1976 .

[92]  B. Irons Structural eigenvalue problems - elimination of unwanted variables , 1965 .

[93]  S. Rubin Improved Component-Mode Representation for Structural Dynamic Analysis , 1975 .

[94]  Françoise Chatelin Eigenvalues of Matrices: Revised Edition , 2012 .

[95]  W. Ledermann,et al.  Eigenvalues of matrices , 2012 .

[96]  Seung Wook Baek,et al.  Rheological Characterization of Hydrogen Peroxide Gel Propellant , 2014 .

[97]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[98]  R. Craig,et al.  Free-interface methods of substructure coupling for dynamic analysis , 1976 .

[99]  Charbel Farhat,et al.  On a component mode synthesis method and its application to incompatible substructures , 1994 .

[100]  R. Hintz Analytical Methods in Component Modal Synthesis , 1975 .

[101]  Christian Soize,et al.  Stochastic Models of Uncertainties in Computational Mechanics , 2012 .

[102]  Gregory M. Hulbert,et al.  Calculation of Component Mode Synthesis Matrices From Measured Frequency Response Functions, Part 1: Theory , 1998 .

[103]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .