Applications of the Klein–Gordon equation in the Feshbach-Villars representation in the non-inertial cosmic string space–time
暂无分享,去创建一个
[1] Marwan Al-Raeei,et al. Feshbach–Villars oscillator in Kaluza-Klein theory , 2023, Nuclear Physics B.
[2] A. Boumali,et al. Statistical properties of the two dimensional Feshbach–Villars oscillator (FVO) in the rotating cosmic string space–time , 2023, Annals of Physics.
[3] A. Karam,et al. Scattering of relativistic spinless particles within the Feshbach-Villars formalism , 2022, Heliyon.
[4] F. Ahmed. Relativistic scalar charged particle in a rotating cosmic string space-time with Cornell-type potential and Aharonov-Bohm effect , 2020, EPL (Europhysics Letters).
[5] F. Ahmed. Aharonov-Bohm and non-inertial effects on a Klein-Gordon oscillator with potential in the cosmic string space-time with a spacelike dislocation , 2020 .
[6] C. H. Nam. Higher dimensional charged black hole surrounded by quintessence in massive gravity , 2019, General Relativity and Gravitation.
[7] L. C. Santos,et al. Scalar bosons with Coulomb potentials in a cosmic string background: scattering and bound states , 2019, The European Physical Journal Plus.
[8] S. T. Timmer,et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.
[9] F. M. Andrade,et al. On the 2D Dirac oscillator in the presence of vector and scalar potentials in the cosmic string spacetime in the context of spin and pseudospin symmetries , 2018, The European Physical Journal C.
[10] R. Fleischer,et al. CP violation in leptonic rare $$B^0_s$$Bs0 decays as a probe of new physics , 2017, 1709.04735.
[11] V. Paschalidis,et al. Rotating stars in relativity , 2016, Living reviews in relativity.
[12] C. C. Barros,et al. Scalar bosons under the influence of noninertial effects in the cosmic string spacetime , 2016, 1608.06692.
[13] C. Furtado,et al. Klein–Gordon oscillator in Kaluza–Klein theory , 2016, 1603.06292.
[14] L. B. Castro. Noninertial effects on the quantum dynamics of scalar bosons , 2015, 1511.01939.
[15] N. Brown,et al. Matrix Continued Fraction Solution to the Relativistic Spin-0 Feshbach–Villars Equations , 2015, 1509.06789.
[16] M. Dvornikov. Galvano-rotational effect induced by electroweak interactions in pulsars , 2015, 1503.00608.
[17] F. M. Andrade,et al. The 2D κ -Dirac oscillator , 2014, 1406.3547.
[18] F. M. Andrade,et al. Remarks on the Dirac oscillator in (2 + 1) dimensions , 2014, 1406.3249.
[19] A. Boumali,et al. Klein–Gordon oscillator under a uniform magnetic field in cosmic string space–time , 2014 .
[20] Matthew D. Schwartz,et al. Quantum Field Theory and the Standard Model , 2013 .
[21] F. M. Andrade,et al. On the κ-Dirac oscillator revisited , 2013, 1312.2973.
[22] K. Bakke. Noninertial effects on the Dirac oscillator in a topological defect spacetime , 2012, 1209.0369.
[23] K. Bakke,et al. Anandan quantum phase for a neutral particle with Fermi–Walker reference frame in the cosmic string background , 2010 .
[24] L. Parker,et al. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity , 2009 .
[25] J. Harnad. The trouble with Physics: The rise of string theory, the fall of a Science, and what comes next , 2008 .
[26] A. Silenko,et al. Hamilton operator and the semiclassical limit for scalar particles in an electromagnetic field , 2008, 0810.1604.
[27] J. Walecka,et al. Relativistic Quantum Mechanics , 2008 .
[28] L. Chetouani,et al. Pair creation of spin-1/2 particles in Feshbach–Villars formalism , 2006 .
[29] L. Chetouani,et al. Exact solutions of the Kemmer equation for a Dirac oscillator , 2005 .
[30] S. Haouat,et al. Pair creation in Feshbach-Villars formalism with two components , 2005 .
[31] M. Mohadesi,et al. The Klein-Gordon and the Dirac Oscillators in a Noncommutative Space , 2004, hep-th/0412122.
[32] A. Mostafazadeh. Relativistic adiabatic approximation and geometric phase , 1998, quant-ph/9807003.
[33] D. S. Staudte. An eight-component relativistic wave equation for spin- particles II , 1996 .
[34] E. P. S. Shellard,et al. Cosmic Strings and Other Topological Defects , 1995 .
[35] M. Moshinsky,et al. The Dirac oscillator , 1989 .
[36] J. Gott. Gravitational lensing effects of vacuum strings - Exact solutions , 1984 .
[37] A. Vilenkin. Gravitational field of vacuum domain walls , 1983 .
[38] G. Sewell. Quantum fields on manifolds: PCT and gravitationally induced thermal states , 1982 .
[39] T. Kibble,et al. Some Implications of a Cosmological Phase Transition , 1980 .
[40] Y. Zel’dovich. Cosmological fluctuations produced near a singularity , 1980 .
[41] T W B Kibble,et al. Topology of cosmic domains and strings , 1976 .
[42] Franziska Abend,et al. Quantum Fields In Curved Space , 2016 .
[43] M. Moshinsky,et al. The harmonic oscillator in modern physics , 1996 .
[44] Franz Gross,et al. Relativistic quantum mechanics and field theory , 1993 .
[45] A. Ashtekar,et al. Conceptual problems of quantum gravity , 1991 .
[46] A. Einstein,et al. Die Grundlage der allgemeinen Relativitätstheorie , 1916 .
[47] S. Hoblit,et al. Few- Body Systems , 2022 .