On radial solutions of semi-relativistic Hartree equations

We consider the semi-relativistic Hartree type equation with nonlocal nonlinearity $F(u) = \lambda (|x|^{-\gamma} * |u|^2)u, 0 < \gamma < n, n \ge 1$. In \cite{chooz2}, the global well-posedness (GWP) was shown for the value of $\gamma \in (0, \frac{2n}{n+1}), n \ge 2$ with large data and $\gamma \in (2, n), n \ge 3$ with small data. In this paper, we extend the previous GWP result to the case for $\gamma \in (1, \frac{2n-1}n), n \ge 2$ with radially symmetric large data. Solutions in a weighted Sobolev space are also studied.

[1]  Vladimir I. Clue Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.

[2]  Tosio Kato On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness , 1995 .

[3]  T. Ozawa Remarks on proofs of conservation laws for nonlinear Schrödinger equations , 2006 .

[4]  Alexander Elgart,et al.  Mean Field Dynamics of Boson Stars , 2005 .

[5]  Hart F. Smith,et al.  Global strichartz estimates for nonthapping perturbations of the laplacian , 1999, math/9912204.

[6]  K. Nakanishi,et al.  Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation , 2003 .

[7]  Kenji Nakanishi,et al.  Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations , 2002 .

[8]  Christopher D. Sogge,et al.  Lectures on Nonlinear Wave Equations , 2005 .

[9]  Enno Lenzmann,et al.  Boson Stars as Solitary Waves , 2005, math-ph/0512040.

[10]  Tohru Ozawa,et al.  On the Semirelativistic Hartree-Type Equation , 2006, SIAM J. Math. Anal..

[11]  Yonggeun Cho,et al.  Lorentz space extension of Strichartz estimates , 2005 .

[12]  A. Kiselev,et al.  Maximal Functions Associated to Filtrations , 2001 .

[13]  Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation , 2004, math-ph/0409019.

[14]  Enno Lenzmann,et al.  Well-posedness for Semi-relativistic Hartree Equations of Critical Type , 2005, math/0505456.

[15]  H. Helson Harmonic Analysis , 1983 .

[16]  E. Lieb,et al.  The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .

[17]  M. Weinstein,et al.  Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .