Hyperchaos and bifurcations in a driven Van der Pol–Duffing oscillator circuit
暂无分享,去创建一个
B. R. Nana Nbendjo | U. Vincent | P. McClintock | P. McClintock | A. N. Njah | U. E. Vincent | B. R. Nana Nbendjo | A. A. Ajayi | A. N. Njah | P. V. E. McClintock | B. Nbendjo | A. A. Ajayi | U. E. Vincent | A. N. Njah
[1] Xinping Guan,et al. Formation and obstacle avoidance control for multiagent systems , 2011 .
[2] Leon O. Chua,et al. EXPERIMENTAL CHAOS SYNCHRONIZATION IN CHUA'S CIRCUIT , 1992 .
[3] P. Woafo,et al. Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .
[4] E. Ott. Chaos in Dynamical Systems: Contents , 1993 .
[5] O. Rössler. An equation for hyperchaos , 1979 .
[6] Xiaobing Zhou,et al. Synchronization and anti-synchronization of a new hyperchaotic Lü system with uncertain parameters via the passive control technique , 2012 .
[7] Dou Fu-Quan,et al. Anti-synchronization in Different Hyperchaotic Systems , 2008 .
[8] Uchechukwu E. Vincent,et al. Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol-Duffing oscillator , 2011 .
[9] Jun Ma,et al. A time-varying hyperchaotic system and its realization in circuit , 2010 .
[11] Clément Tchawoua,et al. Strange attractors and chaos control in a Duffing–Van der Pol oscillator with two external periodic forces , 2004 .
[12] King,et al. Bistable chaos. I. Unfolding the cusp. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[13] Rabinder N Madan,et al. Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.
[14] P. McClintock,et al. High-order synchronization, transitions, and competition among Arnold tongues in a rotator under harmonic forcing. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] C. Hayashi,et al. Nonlinear oscillations in physical systems , 1987 .
[16] Nejib Smaoui,et al. Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems , 2011 .
[17] J. Yorke,et al. CHAOTIC ATTRACTORS IN CRISIS , 1982 .
[18] K. Thamilmaran,et al. Rich Variety of bifurcations and Chaos in a Variant of Murali-Lakshmanan-Chua Circuit , 2000, Int. J. Bifurc. Chaos.
[19] Michael Peter Kennedy,et al. Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices , 2001 .
[20] Murilo S. Baptista,et al. Phase-Locking and Bifurcations of the Sinusoidally-Driven Double Scroll Circuit , 1998 .
[21] K. Grygiel,et al. Hyperchaotic beats and their collapse to the quasiperiodic oscillations , 2008 .
[22] Colin H. Hansen,et al. The response of a Duffing-van der Pol oscillator under delayed feedback control , 2006 .
[23] Qigui Yang,et al. A hyperchaotic system from the Rabinovich system , 2010, J. Comput. Appl. Math..
[24] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[25] A. E. Matouk,et al. Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit , 2011 .
[26] Michael Peter Kennedy,et al. Nonlinear analysis of the Colpitts oscillator and applications to design , 1999 .
[27] Gomes,et al. Bistable chaos. II. Bifurcation analysis. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[28] J. Yorke,et al. Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .
[29] Ajith Abraham,et al. Emergent Web Intelligence: Advanced Information Retrieval , 2012, Emergent Web Intelligence.
[30] Liao Ni-huan,et al. A Hybrid Secure Communication Method Based on the Synchronization of Hyper-chaos Systems , 2012, 2012 International Conference on Communication Systems and Network Technologies.
[31] J. Goree,et al. Synchronization mechanism and Arnold tongues for dust density waves. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] Leon O. Chua,et al. BIFURCATION AND CHAOS IN THE SIMPLEST DISSIPATIVE NON-AUTONOMOUS CIRCUIT , 1994 .
[33] Julien Clinton Sprott,et al. Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system , 2012 .
[34] E. Ott. Chaos in Dynamical Systems: Contents , 2002 .
[35] Yoshisuke Ueda,et al. The road to chaos , 1992 .
[36] Denis de Carvalho Braga,et al. Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor , 2009 .
[37] Julien Clinton Sprott,et al. A new class of chaotic circuit , 2000 .
[38] Aneta Stefanovska,et al. Inference of time-evolving coupled dynamical systems in the presence of noise. , 2012, Physical review letters.
[39] Paul Woafo,et al. Hartley’s oscillator: The simplest chaotic two-component circuit , 2012 .
[40] Ahmed S. Elwakil,et al. A family of Wien‐type oscillators modified for chaos , 1997 .
[41] K. Grygiel,et al. Hyperchaos in second-harmonic generation of light , 1998 .
[42] Jamal Daafouz,et al. Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators , 2005 .
[43] Paul Woafo,et al. Synchronizing modified van der Pol–Duffing oscillators with offset terms using observer design: application to secure communications , 2007 .
[44] A. Tamasevicius,et al. Hyperchaos in coupled Colpitts oscillators , 2003 .
[45] H. Agiza,et al. Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor , 2008 .
[46] Guanrong Chen,et al. A family of n-scroll hyperchaotic attractors and their realization , 2007 .