Hyperchaos and bifurcations in a driven Van der Pol–Duffing oscillator circuit

We investigate the dynamics of a driven Van der Pol–Duffing oscillator circuit and show the existence of higher-dimensional chaotic orbits (or hyperchaos), transient chaos, strange-nonchaotic attractors, as well as quasiperiodic orbits born from Hopf bifurcating orbits. By computing all the Lyapunov exponent spectra, scanning a wide range of the driving frequency and driving amplitude parameter space, we explore in two-parameter space the regimes of different dynamical behaviours.

[1]  Xinping Guan,et al.  Formation and obstacle avoidance control for multiagent systems , 2011 .

[2]  Leon O. Chua,et al.  EXPERIMENTAL CHAOS SYNCHRONIZATION IN CHUA'S CIRCUIT , 1992 .

[3]  P. Woafo,et al.  Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .

[4]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[5]  O. Rössler An equation for hyperchaos , 1979 .

[6]  Xiaobing Zhou,et al.  Synchronization and anti-synchronization of a new hyperchaotic Lü system with uncertain parameters via the passive control technique , 2012 .

[7]  Dou Fu-Quan,et al.  Anti-synchronization in Different Hyperchaotic Systems , 2008 .

[8]  Uchechukwu E. Vincent,et al.  Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol-Duffing oscillator , 2011 .

[9]  Jun Ma,et al.  A time-varying hyperchaotic system and its realization in circuit , 2010 .

[11]  Clément Tchawoua,et al.  Strange attractors and chaos control in a Duffing–Van der Pol oscillator with two external periodic forces , 2004 .

[12]  King,et al.  Bistable chaos. I. Unfolding the cusp. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[14]  P. McClintock,et al.  High-order synchronization, transitions, and competition among Arnold tongues in a rotator under harmonic forcing. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[16]  Nejib Smaoui,et al.  Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems , 2011 .

[17]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[18]  K. Thamilmaran,et al.  Rich Variety of bifurcations and Chaos in a Variant of Murali-Lakshmanan-Chua Circuit , 2000, Int. J. Bifurc. Chaos.

[19]  Michael Peter Kennedy,et al.  Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices , 2001 .

[20]  Murilo S. Baptista,et al.  Phase-Locking and Bifurcations of the Sinusoidally-Driven Double Scroll Circuit , 1998 .

[21]  K. Grygiel,et al.  Hyperchaotic beats and their collapse to the quasiperiodic oscillations , 2008 .

[22]  Colin H. Hansen,et al.  The response of a Duffing-van der Pol oscillator under delayed feedback control , 2006 .

[23]  Qigui Yang,et al.  A hyperchaotic system from the Rabinovich system , 2010, J. Comput. Appl. Math..

[24]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[25]  A. E. Matouk,et al.  Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit , 2011 .

[26]  Michael Peter Kennedy,et al.  Nonlinear analysis of the Colpitts oscillator and applications to design , 1999 .

[27]  Gomes,et al.  Bistable chaos. II. Bifurcation analysis. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[28]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[29]  Ajith Abraham,et al.  Emergent Web Intelligence: Advanced Information Retrieval , 2012, Emergent Web Intelligence.

[30]  Liao Ni-huan,et al.  A Hybrid Secure Communication Method Based on the Synchronization of Hyper-chaos Systems , 2012, 2012 International Conference on Communication Systems and Network Technologies.

[31]  J. Goree,et al.  Synchronization mechanism and Arnold tongues for dust density waves. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Leon O. Chua,et al.  BIFURCATION AND CHAOS IN THE SIMPLEST DISSIPATIVE NON-AUTONOMOUS CIRCUIT , 1994 .

[33]  Julien Clinton Sprott,et al.  Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system , 2012 .

[34]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[35]  Yoshisuke Ueda,et al.  The road to chaos , 1992 .

[36]  Denis de Carvalho Braga,et al.  Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor , 2009 .

[37]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[38]  Aneta Stefanovska,et al.  Inference of time-evolving coupled dynamical systems in the presence of noise. , 2012, Physical review letters.

[39]  Paul Woafo,et al.  Hartley’s oscillator: The simplest chaotic two-component circuit , 2012 .

[40]  Ahmed S. Elwakil,et al.  A family of Wien‐type oscillators modified for chaos , 1997 .

[41]  K. Grygiel,et al.  Hyperchaos in second-harmonic generation of light , 1998 .

[42]  Jamal Daafouz,et al.  Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators , 2005 .

[43]  Paul Woafo,et al.  Synchronizing modified van der Pol–Duffing oscillators with offset terms using observer design: application to secure communications , 2007 .

[44]  A. Tamasevicius,et al.  Hyperchaos in coupled Colpitts oscillators , 2003 .

[45]  H. Agiza,et al.  Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor , 2008 .

[46]  Guanrong Chen,et al.  A family of n-scroll hyperchaotic attractors and their realization , 2007 .