The Bassi Rebay 1 scheme is a special case of the Symmetric Interior Penalty formulation for discontinuous Galerkin discretisations with Gauss-Lobatto points

Abstract In the discontinuous Galerkin (DG) community, several formulations have been proposed to solve PDEs involving second-order spatial derivatives (e.g. elliptic problems). In this paper, we show that, when the discretisation is restricted to the usage of Gauss–Lobatto points, there are important similarities between two common choices: the Bassi-Rebay 1 (BR1) method, and the Symmetric Interior Penalty (SIP) formulation. This equivalence enables the extrapolation of properties from one scheme to the other: a sharper estimation of the minimum penalty parameter for the SIP stability (compared to the more general estimate proposed by Shahbazi [1] ), more efficient implementations of the BR1 scheme, and the compactness of the BR1 method for straight quadrilateral and hexahedral meshes.

[1]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[2]  Esteban Ferrer,et al.  Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation , 2016, J. Comput. Phys..

[3]  Spencer J. Sherwin,et al.  Stability of Projection Methods for Incompressible Flows Using High Order Pressure-Velocity Pairs of Same Degree: Continuous and Discontinuous Galerkin Formulations , 2014 .

[4]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[5]  Guido Kanschat,et al.  An Equal-Order DG Method for the Incompressible Navier-Stokes Equations , 2009, J. Sci. Comput..

[6]  Gonzalo Rubio,et al.  Comparisons of p-adaptation strategies based on truncation- and discretisation-errors for high order discontinuous Galerkin methods , 2016 .

[7]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[8]  Davis A. Kopriva,et al.  Computation of electromagnetic scattering with a non‐conforming discontinuous spectral element method , 2002 .

[9]  Kelly Black,et al.  A conservative spectral element method for the approximation of compressible fluid flow , 1999, Kybernetika.

[10]  Esteban Ferrer,et al.  Insights on Aliasing Driven Instabilities for Advection Equations with Application to Gauss–Lobatto Discontinuous Galerkin Methods , 2017, Journal of Scientific Computing.

[11]  Khosro Shahbazi,et al.  An explicit expression for the penalty parameter of the interior penalty method , 2022 .

[12]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[13]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[14]  Andrew R. Winters,et al.  A Provably Stable Discontinuous Galerkin Spectral Element Approximation for Moving Hexahedral Meshes , 2015, 1510.09011.

[15]  Esteban Ferrer,et al.  Dispersion-Dissipation Analysis for Advection Problems with Nonconstant Coefficients: Applications to Discontinuous Galerkin Formulations , 2018, SIAM J. Sci. Comput..

[16]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[17]  David A. Kopriva,et al.  Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes , 2006, J. Sci. Comput..

[18]  Gregor J. Gassner,et al.  A kinetic energy preserving nodal discontinuous Galerkin spectral element method , 2014 .

[19]  Gregor Gassner,et al.  An Energy Stable Discontinuous Galerkin Spectral Element Discretization for Variable Coefficient Advection Problems , 2014, SIAM J. Sci. Comput..

[20]  David A. Kopriva,et al.  A Polynomial Spectral Calculus for Analysis of DG Spectral Element Methods , 2017, 1704.00709.

[21]  Esteban Ferrer,et al.  A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations , 2011 .

[22]  Gregor Gassner,et al.  The BR1 Scheme is Stable for the Compressible Navier–Stokes Equations , 2017, J. Sci. Comput..

[23]  Esteban Ferrer,et al.  An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large eddy simulations , 2017, J. Comput. Phys..

[24]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[25]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[26]  Gregor Gassner,et al.  Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..

[27]  Esteban Ferrer,et al.  A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes , 2012, J. Comput. Phys..

[28]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[29]  Jason E. Hicken,et al.  Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..