Quantitative Simultaneous Elemental Determinations in Alloys Using Laser-Induced Breakdown Spectroscopy (LIBS) in an Ultra-High Vacuum

Laser-induced breakdown spectroscopy (LIBS) in an ultra-high vacuum is used in simultaneous quantitative elemental analysis of NIST transition metal alloy samples. A plasma is formed by focusing a Nd:YAG laser onto the sample's surface inside a vacuum chamber. UV-visible emission from excited species is monitored with the use of an optical multichannel analyzer (OMA). Linear calibration curves are shown for the elements (percent composition) Al (0.2–1.2%), Cu (0.021–0.49%), Fe (4.5–51.0%), Ni (30.8–80.3%), and Zn (6–12.8%) with the use of nonresonant lines. Detection limits (signal-to-noise = 3) vary with sample composition complexity from 0.0001% for Ni in a simple copper alloy (SRM 1111) to 0.16% for Al in a complex granular sample (SRM 349a). Absolute detection limits are estimated to be in the 20–200 μg/g range for the elements of interest. Simultaneous mass spectra were taken by sweeping the magnetic field of a mass spectrometer. Preliminary results showed the magnet could not be swept fast enough for multielement analysis. The use of a position-sensitive ion detection system is proposed.

[1]  T. L. Thiem,et al.  Interaction of an Excimer-Laser Beam with Metals. Part III: The Effect of a Controlled Atmosphere in Laser-Ablated Plasma Emission , 1992 .

[2]  V. G. Mossotti,et al.  Laser-microanalysis by atomic absorption , 1967 .

[3]  A. Whitehead,et al.  Laser-Spark Excitation of Homogeneous Powdered Materials , 1968 .

[4]  David A. Cremers,et al.  The Analysis of Metals at a Distance Using Laser-Induced Breakdown Spectroscopy , 1987 .

[5]  D. Cremers,et al.  Spectrochemical Analysis of Liquids Using the Laser Spark , 1984 .

[6]  S. Bonfiglio,et al.  Spectrochemical analysis of molten metal using a pulsed laser source , 1966 .

[7]  Laser Abutiow for the Introduction of Solid Metals into an Inductively Coupled Plasma , 1987 .

[8]  W. H. Blackburn,et al.  Spectrochemical Determinations in Garnets Using a Laser Microprobe , 1968 .

[9]  A. A. Yankovskii,et al.  Atomic emission spectral analysis using lasers , 1978 .

[10]  W. Hagenah,et al.  Über einige erfahrungen bei der makrospektralanalyse mit laserlichtquellen—I: Durchschnittsanalyse metallischer proben , 1972 .

[11]  J. Ready Effects of high-power laser radiation , 1971 .

[12]  J. Sneddon,et al.  Quantitative Elemental Analysis of Solid Samples by Arf-Excimer Laser-Ablated atomic Emission Spectrometry , 1992 .

[13]  David A. Cremers,et al.  Determination of Uranium in Solution Using Laser-Induced Breakdown Spectroscopy , 1987 .

[14]  S. Nakajima,et al.  Characteristics of the plasma induced by the bombardment of N2 laser pulse at low pressures , 1984 .

[15]  J. A. Aguilera,et al.  Determination of Carbon Content in Steel Using Laser-Induced Breakdown Spectroscopy , 1992 .

[16]  D. H. Dieke Session 15. Intensities and Transition Probabilities , 1962 .

[17]  Leon J. Radziemski,et al.  Lasers-Induced Plasmas and Applications , 1989 .

[18]  Leon J. Radziemski,et al.  Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry , 1983 .

[19]  A. Strasheim,et al.  Time-resolved direct-reading spectrochemical analysis using a laser source with medium pulse-repetition rate , 1971 .

[20]  Leon J. Radziemski,et al.  Time-resolved laser-induced breakdown spectrometry of aerosols , 1983 .