Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature

Ca2Al2SiO7 (CAS) bulk single crystals were grown by the Czochralski method. Material constants of the crystal were determined over the driving temperature range of a typical combustion pressure sensor. The electrical resistivity at 800 °C was found to be of the order of 108 Ωcm. We constructed a measurement system for the direct piezoelectric effect at high temperature, and characterized the crystals in a simulated engine cylinder combustion environment. Output charge signal against applied stress was detected at 700 °C. These observations suggest that CAS crystals are superior candidate materials for high temperature for stress sensing.

[1]  R. Heimann,et al.  Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN), and La3Ga5.5Ta0.5O14 (LGT): Part I , 1999 .

[2]  G. Borchardt,et al.  High-Temperature Properties of Langasite , 1999 .

[3]  R. Möckel,et al.  REECOB: 20 years of rare earth element calcium oxoborates crystal growth research , 2013 .

[4]  Nobuaki Kawahara,et al.  Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering , 2009, Advanced materials.

[5]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[6]  M. Gemmi,et al.  High-temperature behaviour of melilite: in situ X-ray diffraction study of gehlenite–åkermanite–Na melilite solid solution , 2008 .

[7]  G. Schleinzer,et al.  Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics , 1997 .

[8]  M. Yamaga,et al.  Energy levels and symmetry of Ce3+ in fluoride and oxide crystals , 1998 .

[9]  Nobuo,et al.  Single crystal growth of akermanite (Ca2MgSi2O7) and gehlenite (Ca2Al2SiO7) by the floating zone method , 1979 .

[10]  T. Shrout,et al.  Growth and characterization of high temperature La3Nb0.5Ga5.3Al0.2O14 (LNGA) and La3Ta0.5Ga5.3Al0.2O14 (LTGA) piezoelectric single crystals , 2008 .

[11]  M. Yamaga,et al.  Mechanism of long-lasting phosphorescence process of Ce 3+ -doped Ca 2 Al 2 SiO 7 melilite crystals , 2002 .

[12]  S. Haussühl,et al.  Elastic and thermoelastic properties of synthetic Ca2MgSi2O7 (åkermanite) and Ca2ZnSi2O7 (hardystonite) , 2004 .

[13]  T. Fukuda,et al.  Crystal Growth and High Temperature Piezoelectricity of La3Ta0.5Ga5.5 − xAlxO14 Crystals , 2004 .

[14]  Shujun Zhang,et al.  Piezoelectric Materials for High Temperature Sensors , 2011 .

[15]  H. Takeda,et al.  Czochralski growth of RE3Ga5SiO14 (RE=La, Pr, Nd) single crystals for the analysis of the influence of rare earth substitution on piezoelectricity , 1998 .

[16]  Xian Zhao,et al.  Dielectric and electromechanical properties of rare earth calcium oxyborate piezoelectric crystals at high temperatures , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  T. Shiosaki,et al.  Effective substitution of aluminum for gallium in langasite-type crystals for a pressure sensor use at high temperature , 2005, IEEE Ultrasonics Symposium, 2005..

[18]  Holger Fritze,et al.  Langasite for high-temperature bulk acoustic wave applications , 2001 .

[19]  Thomas R. Shrout,et al.  Piezoelectric accelerometers for ultrahigh temperature application , 2010 .

[20]  Y. Ohno,et al.  Oxygen defects in langasite (La3Ga5SiO14) single crystal grown by vertical Bridgman (VB) method , 2007 .

[21]  T. Tsurumi,et al.  Cation distribution and piezoelectric properties of aluminum substituted La3Ta0.5Ga5.5O14 single crystals , 2010 .

[22]  Thomas R. Shrout,et al.  Characterization of high temperature piezoelectric crystals with an ordered langasite structure , 2009 .