A Simple, Exact Density-Functional-Theory Embedding Scheme

Density functional theory (DFT) provides a formally exact framework for quantum embedding. The appearance of nonadditive kinetic energy contributions in this context poses significant challenges, but using optimized effective potential (OEP) methods, various groups have devised DFT-in-DFT methods that are equivalent to Kohn–Sham (KS) theory on the whole system. This being the case, we note that a very considerable simplification arises from doing KS theory instead. We then describe embedding schemes that enforce Pauli exclusion via a projection technique, completely avoiding numerically demanding OEP calculations. Illustrative applications are presented using DFT-in-DFT, wave-function-in-DFT, and wave-function-in-Hartree–Fock embedding, and using an embedded many-body expansion.

[1]  Lucas Visscher,et al.  Performance of Kinetic Energy Functionals for Interaction Energies in a Subsystem Formulation of Density Functional Theory. , 2009, Journal of chemical theory and computation.

[2]  Mark S Gordon,et al.  The fragment molecular orbital and systematic molecular fragmentation methods applied to water clusters. , 2012, Physical chemistry chemical physics : PCCP.

[3]  A. Warshel,et al.  Frozen density functional approach for ab initio calculations of solvated molecules , 1993 .

[4]  D. Truhlar,et al.  Assessment of the pairwise additive approximation and evaluation of many-body terms for water clusters. , 2006, The journal of physical chemistry. B.

[5]  Jerzy Leszczynski,et al.  COMPUTATIONAL CHEMISTRY: Reviews of Current Trends , 2006 .

[6]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[7]  S. Clima,et al.  Embedding Fragment ab Initio Model Potentials in CASSCF/CASPT2 Calculations of Doped Solids: Implementation and Applications. , 2008, Journal of chemical theory and computation.

[8]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[9]  F. Manby Accurate condensed-phase quantum chemistry , 2010 .

[10]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[11]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[12]  P. Żuchowski,et al.  Derivation of the Supermolecular Interaction Energy from the Monomer Densities in the Density Functional Theory , 2009, 0908.0798.

[13]  Senatore,et al.  Density dependence of the dielectric constant of rare-gas crystals. , 1986, Physical review. B, Condensed matter.

[14]  Hans-Joachim Werner,et al.  Correlation regions within a localized molecular orbital approach. , 2008, The Journal of chemical physics.

[15]  H. L. Hartley,et al.  Manuscript Preparation , 2022 .

[16]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[17]  Cortona,et al.  Self-consistently determined properties of solids without band-structure calculations. , 1991, Physical review. B, Condensed matter.

[18]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[19]  Peter G. Lykos,et al.  On the Pi‐Electron Approximation and Its Possible Refinement , 1956 .

[20]  Thomas M Henderson,et al.  Embedding wave function theory in density functional theory. , 2006, The Journal of chemical physics.

[21]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[22]  Christoph R. Jacob,et al.  Quantum-chemical embedding methods for treating local electronic excitations in complex chemical systems , 2012 .

[23]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[24]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[25]  P. J. Bygrave,et al.  Improving density functional theory for crystal polymorph energetics. , 2012, Physical chemistry chemical physics : PCCP.

[26]  Beate Paulus,et al.  On the accuracy of correlation-energy expansions in terms of local increments. , 2005, The Journal of chemical physics.

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  L. Seijo,et al.  Improved embedding ab initio model potentials for embedded cluster calculations. , 2009, The journal of physical chemistry. A.

[29]  S. Huzinaga,et al.  Theory of Separability of Many‐Electron Systems , 1971 .