Understanding the evolution of mechanical and electrical properties of wet-spun PEDOT:PSS fibers with increasing carbon nanotube loading

[1]  Jiupeng Zhao,et al.  Electrostatic Interfacial Cross-Linking and Structurally Oriented Fiber Constructed by Surface-Modified 2D MXene for High-Performance Flexible Pseudocapacitive Storage. , 2023, ACS nano.

[2]  Qingwen Li,et al.  Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption , 2022, Science advances.

[3]  Jizhen Zhang,et al.  Carbon nanotubes boosts the toughness and conductivity of wet-spun MXene fibers for fiber-shaped super capacitors , 2022, Carbon.

[4]  Yong Wang,et al.  Ultraflexible PEDOT:PSS/Helical Carbon Nanotubes Film for All-in-One Photothermoelectric Conversion. , 2022, ACS applied materials & interfaces.

[5]  Huisheng Peng,et al.  Industrial scale production of fibre batteries by a solution-extrusion method , 2022, Nature Nanotechnology.

[6]  R. Andrews,et al.  Highly conductive wet-spun PEDOT:PSS fibers for applications in electronic textiles , 2020 .

[7]  Q. Pei,et al.  Large-area display textiles integrated with functional systems , 2020, Nature.

[8]  Chun H. Wang,et al.  Wearable Temperature Sensors with Enhanced Sensitivity by Engineering Microcrack Morphology in PEDOT:PSS-PDMS Sensors. , 2020, ACS applied materials & interfaces.

[9]  M. Ge,et al.  On the mechanism of conductivity enhancement in PEDOT:PSS/PVA blend fiber induced by UV-light irradiation , 2020 .

[10]  Chunhong Zhu,et al.  Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors , 2020 .

[11]  Fuwei Liu,et al.  Hierarchical Porous RGO/PEDOT/PANI Hybrid for Planar/Linear Supercapacitor with Outstanding Flexibility and Stability , 2020, Nano-micro letters.

[12]  Chaobin He,et al.  Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT:PSS nanocomposites , 2019, Carbon.

[13]  J. Brill,et al.  Effect of Drawing on the Electrical, Thermoelectrical, and Mechanical Properties of Wet-Spun PEDOT:PSS Fibers , 2019, ACS Applied Polymer Materials.

[14]  Weibang Lu,et al.  Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics , 2019, Advanced materials.

[15]  Kun Zhang,et al.  Electrochemical properties of PEDOT: PSS /V2O5 hybrid fiber based supercapacitors , 2019, Journal of Physics and Chemistry of Solids.

[16]  Zhiyu Wang,et al.  Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications , 2019, Journal of Materials Chemistry A.

[17]  Zhiyu Wang,et al.  Highly Conductive Ti3 C2 Tx MXene Hybrid Fibers for Flexible and Elastic Fiber-Shaped Supercapacitors. , 2019, Small.

[18]  D. Lipomi,et al.  Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS , 2019, Advanced materials.

[19]  J. García-Torres,et al.  Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT:PSS fibres , 2018, Materials & Design.

[20]  Jun Young Oh,et al.  How can we make carbon nanotube yarn stronger? , 2018, Composites Science and Technology.

[21]  Junxiang Zhang,et al.  All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety , 2018, Nano Energy.

[22]  Kwang-Suk Jang,et al.  Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators , 2018, Carbon.

[23]  Dali Cai,et al.  Carbon nanotube bundles with tensile strength over 80 GPa , 2018, Nature Nanotechnology.

[24]  Eric S. Muckley,et al.  New Insights on Electro-Optical Response of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Film to Humidity. , 2017, ACS applied materials & interfaces.

[25]  Liu Pengcheng,et al.  Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy , 2017 .

[26]  D. Wesolowski,et al.  Molecular Origins of the Zeta Potential. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[27]  Bo Li,et al.  Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation , 2016 .

[28]  Ning Liu,et al.  Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density , 2016 .

[29]  Jianli Cheng,et al.  A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode , 2016, Advanced materials.

[30]  Jian Zhou,et al.  High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators , 2016 .

[31]  Jingkun Xu,et al.  Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review , 2015 .

[32]  Jun Wei,et al.  Emergence of fiber supercapacitors. , 2015, Chemical Society reviews.

[33]  Congju Li,et al.  Influence of draw ratio on the structure and properties of PEDOT-PSS/PAN composite conductive fibers , 2014 .

[34]  J. Razal,et al.  Strain‐Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity , 2014 .

[35]  Y. Cohen,et al.  Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity , 2013, Science.

[36]  G. Wallace,et al.  Exploiting high quality PEDOT:PSS–SWNT composite formulations for wet-spinning multifunctional fibers , 2012 .

[37]  J. Razal,et al.  One‐Step Wet‐Spinning Process of Poly(3,4‐ethylenedioxythiophene):Poly(styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity , 2011 .

[38]  L. Kirste,et al.  Size-dependent reactivity of diamond nanoparticles. , 2010, ACS nano.

[39]  P. Ajayan,et al.  Ionically self-assembled polyelectrolyte-based carbon nanotube fibers , 2009 .

[40]  Etienne Goovaerts,et al.  Efficient Isolation and Solubilization of Pristine Single‐Walled Nanotubes in Bile Salt Micelles , 2004 .

[41]  H. Okuzaki,et al.  Spinning and Characterization of Conducting Microfibers , 2003 .

[42]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .

[43]  Helmut Neugebauer,et al.  Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study☆ , 2000 .

[44]  Serge Lefrant,et al.  In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT) , 1999 .

[45]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[46]  W. Blau,et al.  Resonance Raman and infrared spectroscopy of carbon nanotubes , 1994 .

[47]  Hidenori Okuzaki,et al.  Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol , 2009 .

[48]  S. Costa,et al.  Characterization of carbon nanotubes by Raman spectroscopy , 2008 .

[49]  Dali Yang,et al.  Formation of conductive polyaniline fibers derived from highly concentrated emeraldine base solutions , 1997 .

[50]  Arthur J. Epstein,et al.  Polyanilines: a novel class of conducting polymers , 1989 .