Alternative treatments for melanoma: targeting BCL-2 family members to de-bulk and kill cancer stem cells

[1]  M. Fujita,et al.  Understanding melanoma stem cells. , 2015, Melanoma management.

[2]  M. Czyz,et al.  Pro-survival role of MITF in melanoma. , 2015, The Journal of investigative dermatology.

[3]  A. Rust,et al.  BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model , 2015, Proceedings of the National Academy of Sciences.

[4]  M. Herlyn,et al.  A stress-induced early innate response causes multidrug tolerance in melanoma , 2015, Oncogene.

[5]  S. Singhal,et al.  Targeting the Metabolic Plasticity of Multiple Myeloma with FDA-Approved Ritonavir and Metformin , 2014, Clinical Cancer Research.

[6]  J. Wolchok,et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma. , 2014, The New England journal of medicine.

[7]  H P Soyer,et al.  A stress-induced early innate response causes multidrug tolerance in melanoma , 2014, Oncogene.

[8]  D. Fisher,et al.  The melanoma revolution: From UV carcinogenesis to a new era in therapeutics , 2014, Science.

[9]  J. Utikal,et al.  Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. , 2014, The New England journal of medicine.

[10]  P. Ascierto,et al.  Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. , 2014, The New England journal of medicine.

[11]  S. Robinson,et al.  Combining a BCL2 Inhibitor with the Retinoid Derivative Fenretinide Targets Melanoma Cells Including Melanoma Initiating Cells , 2014, The Journal of investigative dermatology.

[12]  Antoni Ribas,et al.  Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial , 2014, The Lancet.

[13]  M. Biffoni,et al.  Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer , 2014, Cell Death and Differentiation.

[14]  R. Weinberg,et al.  Tackling the cancer stem cells — what challenges do they pose? , 2014, Nature Reviews Drug Discovery.

[15]  N. Haass,et al.  Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy , 2014, Pigment cell & melanoma research.

[16]  U. Schumacher,et al.  Melanoma never says die , 2014, Experimental dermatology.

[17]  A. Hauschild,et al.  COMBI-d: A randomized, double-blinded, Phase III study comparing the combination of dabrafenib and trametinib to dabrafenib and trametinib placebo as first-line therapy in patients (pts) with unresectable or metastatic BRAFV600E/K mutation-positive cutaneous melanoma , 2014 .

[18]  P. Bahadoran,et al.  CD271 is an imperfect marker for melanoma initiating cells , 2014, Oncotarget.

[19]  H. Lehrach,et al.  The Nerve Growth Factor Receptor CD271 Is Crucial to Maintain Tumorigenicity and Stem-Like Properties of Melanoma Cells , 2014, PloS one.

[20]  Xia Li,et al.  Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo , 2014, Apoptosis.

[21]  Peter E. Czabotar,et al.  Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy , 2013, Nature Reviews Molecular Cell Biology.

[22]  J. Armstrong,et al.  Oncogenic BRAF signalling increases Mcl‐1 expression in cutaneous metastatic melanoma , 2013, Experimental dermatology.

[23]  L. Kwong,et al.  Navigating the Therapeutic Complexity of PI3K Pathway Inhibition in Melanoma , 2013, Clinical Cancer Research.

[24]  S. Fulda Regulation of apoptosis pathways in cancer stem cells. , 2013, Cancer letters.

[25]  L. Sommer,et al.  Testing the cancer stem cell hypothesis in melanoma: the clinics will tell. , 2013, Cancer letters.

[26]  C. Billard BH3 Mimetics: Status of the Field and New Developments , 2013, Molecular Cancer Therapeutics.

[27]  J. Wolchok,et al.  The delicate balance of melanoma immunotherapy , 2013, Clinical & translational immunology.

[28]  R. Tothill,et al.  BRAF/NRAS Wild-Type Melanomas Have a High Mutation Load Correlating with Histologic and Molecular Signatures of UV Damage , 2013, Clinical Cancer Research.

[29]  S. Karlsson,et al.  Combining CAR T cells and the Bcl-2 family apoptosis inhibitor ABT-737 for treating B-cell malignancy , 2013, Cancer Gene Therapy.

[30]  Ke Chen,et al.  Understanding and targeting cancer stem cells: therapeutic implications and challenges , 2013, Acta Pharmacologica Sinica.

[31]  L. Schon,et al.  CD271 as a Marker for Mesenchymal Stem Cells in Bone Marrow versus Umbilical Cord Blood , 2013, Cells Tissues Organs.

[32]  N. Tanaka,et al.  CD271 Defines a Stem Cell-Like Population in Hypopharyngeal Cancer , 2013, PloS one.

[33]  Sanjun Shi,et al.  Cancer stem cells: therapeutic implications and perspectives in cancer therapy , 2013 .

[34]  John M. Ashton,et al.  BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. , 2013, Cell stem cell.

[35]  Jessica M. Rusert,et al.  A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. , 2013, Cell stem cell.

[36]  C. Shea,et al.  Melanocytes, melanocyte stem cells, and melanoma stem cells. , 2013, Clinics in dermatology.

[37]  Jun S. Song,et al.  BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition , 2013, Proceedings of the National Academy of Sciences.

[38]  F. Menaa Latest Approved Therapies for Metastatic Melanoma: What Comes Next? , 2013, Journal of skin cancer.

[39]  A. Letai,et al.  ABT-199: taking dead aim at BCL-2. , 2013, Cancer cell.

[40]  P. Hersey,et al.  The BH3-mimetic ABT-737 sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors but does not reverse acquired resistance. , 2013, Carcinogenesis.

[41]  P. Fisher,et al.  Targeting the Bcl-2 family for cancer therapy , 2013, Expert opinion on therapeutic targets.

[42]  S. Ghafouri-Fard,et al.  Cancer stem cells and response to therapy. , 2012, Asian Pacific journal of cancer prevention : APJCP.

[43]  Brian E. Schwartz,et al.  CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. , 2012, Cancer research.

[44]  M. McCarter,et al.  ALDH1A Isozymes are Markers of Human Melanoma Stem Cells and Potential Therapeutic Targets , 2012, Stem cells.

[45]  A. Aplin,et al.  BH3-only protein silencing contributes to acquired resistance to PLX4720 in human melanoma , 2012, Cell Death and Differentiation.

[46]  Kuen-Feng Chen,et al.  A novel obatoclax derivative, SC-2001, induces apoptosis in hepatocellular carcinoma cells through SHP-1-dependent STAT3 inactivation. , 2012, Cancer letters.

[47]  J. Utikal,et al.  Improved survival with MEK inhibition in BRAF-mutated melanoma. , 2012, The New England journal of medicine.

[48]  Dirk Schadendorf,et al.  Improved survival with MEK Inhibition in BRAF-mutated melanoma for the METRIC Study Group , 2012 .

[49]  P. Bahadoran,et al.  Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells , 2012, Oncogene.

[50]  Andrew L. Kung,et al.  Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. , 2012, Cancer cell.

[51]  S. Markovic,et al.  Therapy for metastatic melanoma: the past, present, and future , 2012, BMC Medicine.

[52]  Hao Xiong,et al.  Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[53]  Peter Dirks,et al.  Cancer stem cells: an evolving concept , 2012, Nature Reviews Cancer.

[54]  P. Hersey,et al.  Modulation of NOXA and MCL-1 as a Strategy for Sensitizing Melanoma Cells to the BH3-Mimetic ABT-737 , 2011, Clinical Cancer Research.

[55]  Yuchun Luo,et al.  ABT-737 synergizes with Bortezomib to kill melanoma cells , 2011, Biology Open.

[56]  T. Hadden,et al.  Akt, FoxO and regulation of apoptosis. , 2011, Biochimica et biophysica acta.

[57]  P. Fisher,et al.  Targeting Mcl-1 for the therapy of cancer , 2011, Expert opinion on investigational drugs.

[58]  D. Cooper,et al.  The Combination of BH3-Mimetic ABT-737 with the Alkylating Agent Temozolomide Induces Strong Synergistic Killing of Melanoma Cells Independent of p53 , 2011, PloS one.

[59]  K. Smalley,et al.  Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. , 2011, Biochemical pharmacology.

[60]  A. Hauschild,et al.  Improved survival with vemurafenib in melanoma with BRAF V600E mutation. , 2011, The New England journal of medicine.

[61]  P. Bahadoran,et al.  Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny , 2011, Oncogene.

[62]  H. Moch,et al.  Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. , 2011, Cancer research.

[63]  R. Khosravi‐Far,et al.  Apoptotic cell signaling in cancer progression and therapy. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[64]  Stephen L. Abrams,et al.  Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging , 2011, Aging.

[65]  C. Rudin,et al.  Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[66]  Brian J. Wilson,et al.  VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. , 2011, Cancer research.

[67]  K. Hoek,et al.  Cancer stem cells versus phenotype‐switching in melanoma , 2010, Pigment cell & melanoma research.

[68]  W. Wilson,et al.  Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. , 2010, The Lancet. Oncology.

[69]  D. Schadendorf,et al.  Improved survival with ipilimumab in patients with metastatic melanoma. , 2010, The New England journal of medicine.

[70]  A. Aplin,et al.  Akt3-mediated resistance to apoptosis in B-RAF-targeted melanoma cells. , 2010, Cancer research.

[71]  S. Edwards,et al.  Mcl‐1; the molecular regulation of protein function , 2010, FEBS letters.

[72]  Alexander Roesch,et al.  A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth , 2010, Cell.

[73]  D. Green,et al.  The BCL-2 family reunion. , 2010, Molecular cell.

[74]  M. Frank,et al.  The therapeutic promise of the cancer stem cell concept. , 2010, The Journal of clinical investigation.

[75]  S. Morrison,et al.  Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution , 2009, Cell.

[76]  A. Chinnaiyan,et al.  Melanoma proliferation and chemoresistance controlled by the DEK oncogene. , 2009, Cancer research.

[77]  A. Ribas,et al.  Immunosensitization with a Bcl-2 small molecule inhibitor , 2009, Cancer Immunology, Immunotherapy.

[78]  A. Aplin,et al.  Mcl-1 Is Required for Melanoma Cell Resistance to Anoikis , 2009, Molecular Cancer Research.

[79]  M. Fujita,et al.  BH3 mimetic ABT-737 and a proteasome inhibitor synergistically kill melanomas through Noxa-dependent apoptosis. , 2009, The Journal of investigative dermatology.

[80]  M. Fujita,et al.  Active N-Ras and B-Raf inhibit anoikis by downregulating Bim expression in melanocytic cells. , 2009, The Journal of investigative dermatology.

[81]  A. Letai,et al.  Mimicking the BH3 domain to kill cancer cells , 2008, Oncogene.

[82]  S. Fesik,et al.  ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. , 2008, Cancer research.

[83]  R. Dummer,et al.  In vivo switching of human melanoma cells between proliferative and invasive states. , 2008, Cancer research.

[84]  Mohamed H. Sayegh,et al.  Identification of cells initiating human melanomas , 2008, Nature.

[85]  P. Dent,et al.  Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. , 2007, Cancer research.

[86]  C. Scott,et al.  The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. , 2006, Cancer cell.

[87]  Irving L Weissman,et al.  Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. , 2006, Cancer research.

[88]  S. Korsmeyer,et al.  An inhibitor of Bcl-2 family proteins induces regression of solid tumours , 2005, Nature.

[89]  K. Eisenmann,et al.  Mitogen-activated protein kinase pathway-dependent tumor-specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad. , 2003, Cancer research.

[90]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[91]  S. R. Datta,et al.  Cellular survival: a play in three Akts. , 1999, Genes & development.

[92]  D. Norris Differential control of cell death in the skin. , 1995, Archives of dermatology.

[93]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[94]  A. Letai,et al.  UvA-DARE ( Digital Academic Repository ) Targeting cancer stem cells : Modulating apoptosis and stemness Çolak , 2016 .

[95]  S. Fesik,et al.  Small molecule Mcl-1 inhibitors for the treatment of cancer. , 2015, Pharmacology & therapeutics.

[96]  S. Barthel,et al.  Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? , 2014, Laboratory Investigation.

[97]  C. Drake,et al.  Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer , 2014, Nature Reviews Clinical Oncology.

[98]  P. Chapman Mechanisms of resistance to RAF inhibition in melanomas harboring a BRAF mutation. , 2013, American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting.

[99]  G. Dellino,et al.  ABT-199: Taking Dead Aim at BCL-2 , 2013 .

[100]  Irving L. Weissman,et al.  Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271 , 2011, Nature.

[101]  J. Salk Clonal evolution in cancer , 2010 .

[102]  Mark Shackleton,et al.  Efficient tumour formation by single human melanoma cells , 2008 .

[103]  M. Tronnier,et al.  Cancer Management and Research Dovepress Treating Advanced Melanoma: Current Insights and Opportunities , 2022 .