Towards lighting-invariant visual navigation: An appearance-based approach using scanning laser-rangefinders

Abstract In an effort to facilitate lighting-invariant exploration, this paper presents an appearance-based approach using 3D scanning laser-rangefinders for two core visual navigation techniques: visual odometry (VO) and visual teach and repeat (VT&R). The key to our method is to convert raw laser intensity data into greyscale camera-like images, in order to apply sparse, appearance-based techniques traditionally used with camera imagery. The novel concept of an image stack is introduced, which is an array of azimuth, elevation, range, and intensity images that are used to generate keypoint measurements and measurement uncertainties. Using this technique, we present the following four experiments. In the first experiment, we explore the stability of a representative keypoint detection/description algorithm on camera and laser intensity images collected over a 24 h period outside. In the second and third experiments, we validate our VO algorithm using real data collected outdoors with two different 3D scanning laser-rangefinders. Lastly, our fourth experiment presents promising preliminary VT&R localization results, where the teaching phase was done during the day and the repeating phase was done at night. These experiments show that it possible to overcome lighting sensitivity encountered with cameras, yet continue to exploit the heritage of the appearance-based visual odometry pipeline.

[1]  Joachim Hertzberg,et al.  Three-dimensional mapping with time-of-flight cameras , 2009 .

[2]  William Whittaker,et al.  Autonomous driving in urban environments: Boss and the Urban Challenge , 2008 .

[3]  Roland Siegwart,et al.  A state-of-the-art 3D sensor for robot navigation , 2004 .

[4]  Darius Burschka,et al.  Automatic Registration of Panoramic 2.5D Scans and Color Images , 2008 .

[5]  Hang Dong,et al.  Lighting-Invariant Visual Odometry using Lidar Intensity Imagery and Pose Interpolation , 2012, FSR.

[6]  William Whittaker,et al.  Autonomous driving in urban environments: Boss and the Urban Challenge , 2008, J. Field Robotics.

[7]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[8]  Derek D. Lichti,et al.  A method for automated registration of unorganised point clouds , 2008 .

[9]  T Rabbani Shah,et al.  Automatic point cloud registration using constrained search for corresponding objects , 2005 .

[10]  Edwin Olson,et al.  Extracting general-purpose features from LIDAR data , 2010, 2010 IEEE International Conference on Robotics and Automation.

[11]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[12]  C. Fröhlich,et al.  Traffic Construction Analysis by Use of Terrestrial Laser Scanning , 2004 .

[13]  Ian D. Reid,et al.  Vast-scale Outdoor Navigation Using Adaptive Relative Bundle Adjustment , 2010, Int. J. Robotics Res..

[14]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[15]  Sven Wachsmuth,et al.  Laser-based navigation enhanced with 3D time-of-flight data , 2009, 2009 IEEE International Conference on Robotics and Automation.

[16]  Clark Adams Over the Horizon , 1976, Computer.

[17]  Michael Bosse,et al.  Continuous 3D scan-matching with a spinning 2D laser , 2009, 2009 IEEE International Conference on Robotics and Automation.

[18]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[20]  Eduardo Nebot,et al.  Localization and map building using laser range sensors in outdoor applications , 2000, J. Field Robotics.

[21]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[22]  Tim D. Barfoot,et al.  A self-calibrating 3D ground-truth localization system using retroreflective landmarks , 2011, 2011 IEEE International Conference on Robotics and Automation.

[23]  David Wettergreen,et al.  Field Experiments in Mobility and Navigation with a Lunar Rover Prototype , 2009, FSR.

[24]  Susanne Becker,et al.  Automatic Marker-Free Registration of Terrestrial Laser Scans using Reflectance Features , 2007 .

[25]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[26]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[27]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[28]  Andrew E. Johnson,et al.  Computer Vision on Mars , 2007, International Journal of Computer Vision.

[29]  Claus Brenner,et al.  Registration of terrestrial laser scanning data using planar patches and image data , 2006 .

[30]  François Blais Review of 20 years of range sensor development , 2004, J. Electronic Imaging.

[31]  Joshua A. Marshall,et al.  Autonomous underground tramming for center-articulated vehicles , 2008 .

[32]  Al Richardson,et al.  Vision-based semi-autonomous outdoor robot system to reduce soldier workload , 2001, SPIE Defense + Commercial Sensing.

[33]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[34]  Peter K. Allen,et al.  Seeing into the past: creating a 3D modeling pipeline for archaeological visualization , 2004 .

[35]  Paul Timothy Furgale,et al.  Continuous-time batch estimation using temporal basis functions , 2012, 2012 IEEE International Conference on Robotics and Automation.

[36]  S. Se,et al.  VISION BASED MODELING AND LOCALIZATION FOR PLANETARY EXPLORATION ROVERS , 2004 .

[37]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[38]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[39]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[40]  Ioannis M. Rekleitis,et al.  Over-the-horizon, autonomous navigation for planetary exploration , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Eduardo Mario Nebot,et al.  Localization and map building using laser range sensors in outdoor applications , 2000, J. Field Robotics.

[42]  Paul Timothy Furgale,et al.  Towards appearance-based methods for lidar sensors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[43]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[44]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  John Enright,et al.  Visual odometry aided by a sun sensor and inclinometer , 2011 .

[46]  J. Brock,et al.  Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies , 2002 .

[47]  Cang Ye,et al.  A visual odometry method based on the SwissRanger SR4000 , 2010, Defense + Commercial Sensing.

[48]  Joachim Hertzberg,et al.  Benchmarking urban six‐degree‐of‐freedom simultaneous localization and mapping , 2008, J. Field Robotics.

[49]  Joachim Hertzberg,et al.  Globally consistent 3D mapping with scan matching , 2008, Robotics Auton. Syst..

[50]  Sebastian Thrun,et al.  Junior: The Stanford entry in the Urban Challenge , 2008, J. Field Robotics.

[51]  Jörg Stückler,et al.  Using Time-of-Flight cameras with active gaze control for 3D collision avoidance , 2010, 2010 IEEE International Conference on Robotics and Automation.

[52]  Joachim Hertzberg,et al.  An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments , 2003, Robotics Auton. Syst..

[53]  H. Yoshitaka,et al.  Map Building for Mobile Robots using a SOKUIKI Sensor -Robust Scan Matching using Laser Reflection Intensity , 2006, 2006 SICE-ICASE International Joint Conference.

[54]  Timothy D. Barfoot,et al.  Visual teach and repeat for long-range rover autonomy , 2010 .

[55]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[56]  Daniel D. Lee,et al.  Little Ben: The Ben Franklin Racing Team's entry in the 2007 DARPA Urban Challenge , 2008, J. Field Robotics.

[57]  Ralf Reulke,et al.  Combination of terrestrial Laser Scanning with high resolution panoramic Images for Investigations in Forest Applications and tree species recognition , 2004 .

[58]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[59]  John R. Spletzer,et al.  Little Ben: The Ben Franklin Racing Team's entry in the 2007 DARPA Urban Challenge , 2008 .

[60]  H. Yoshitaka,et al.  Mobile Robot Localization and Mapping by Scan Matching using Laser Reflection Intensity of the SOKUIKI Sensor , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[61]  Joachim Hertzberg,et al.  Benchmarking urban six-degree-of-freedom simultaneous localization and mapping , 2008 .

[62]  Vincent Lepetit,et al.  View-based Maps , 2010, Int. J. Robotics Res..

[63]  Günther Schmidt,et al.  Fusing range and intensity images for mobile robot localization , 1999, IEEE Trans. Robotics Autom..