Computing the Visibility Polygon Using Few Variables

We present several algorithms for computing the visibility polygon of a simple polygon $\ensuremath{\mathcal{P}}$ from a viewpoint inside the polygon, when the polygon resides in read-only memory and only few working variables can be used. The first algorithm uses a constant number of variables, and outputs the vertices of the visibility polygon in $O(n\ensuremath{\bar{r}})$ time, where $\ensuremath{\bar{r}}$ denotes the number of reflex vertices of $\ensuremath{\mathcal{P}}$ that are part of the output. The next two algorithms use O(logr) variables, and output the visibility polygon in O(nlogr) randomized expected time or O(nlog2r) deterministic time, where r is the number of reflex vertices of $\ensuremath{\mathcal{P}}$ .

[1]  Raimund Seidel Convex hull computations , 1997 .

[2]  Luc Devroye,et al.  A note on the height of binary search trees , 1986, JACM.

[3]  Sanjeev Khanna,et al.  Space-efficient online computation of quantile summaries , 2001, SIGMOD '01.

[4]  Prosenjit Bose,et al.  A generalized Winternitz Theorem , 2011 .

[5]  Timothy M. Chan Comparison-based time-space lower bounds for selection , 2009, TALG.

[6]  Stefan Arnborg,et al.  Algorithm Theory — SWAT'98 , 1998, Lecture Notes in Computer Science.

[7]  Greg N. Frederickson,et al.  Upper Bounds for Time-Space Trade-Offs in Sorting and Selection , 1987, J. Comput. Syst. Sci..

[8]  Venkatesh Raman,et al.  Improved Upper Bounds for Time-Space Tradeoffs for Selection with Limited Storage , 1998, SWAT.

[9]  Yajun Wang,et al.  Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon , 2010, WALCOM.

[10]  Timothy M. Chan,et al.  Multi-Pass Geometric Algorithms , 2007, Discret. Comput. Geom..

[11]  Subir Kumar Ghosh,et al.  Visibility Algorithms in the Plane , 2007 .

[12]  Fabrizio Grandoni,et al.  Resilient dictionaries , 2009, TALG.

[13]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[14]  B. Joe,et al.  Corrections to Lee's visibility polygon algorithm , 1987, BIT.

[15]  J. Ian Munro,et al.  Selection and sorting with limited storage , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[16]  Venkatesh Raman,et al.  Selection from Read-Only Memory and Sorting with Minimum Data Movement , 1996, Theor. Comput. Sci..

[17]  Günter Rote,et al.  Constant-Working-Space Algorithms for Geometric Problems , 2009, CCCG.