Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate?

Type 1, α/β hydrolase-like thioesterase (TE) domains are essential offloading enzymes, releasing covalently bound products from fatty acid, polyketide, and non-ribosomal peptide biosynthetic complexes. The release step can occur by attack of an exogenous nucleophile effecting hydrolysis or transesterification or by an intramolecular O-, N-, or C-nucleophile, effecting macrolactonization, macrolactamization or Claisen-like condensation of the product. Thus in addition to ensuring turnover of the pathway, TEs provide access to increased chemical diversity. We review the diversity, structure, and mechanism of PKS and NRPS TEs and discuss recent works that highlight the role of TEs as potential arbitrators in offloading. In particular, we examine cases where TEs act as logic gates that ask a particular question about the substrate and use this information to determine the substrate's fate. As the TE mechanism occurs via two steps, we analyze both the loading and release steps independently as logic gates. The use of logic gates provides an important perspective when evaluating the evolution of TEs within a pathway, as well as highlighting work towards the goal of predicting TE function in unknown and engineered pathways.

[1]  M. Wang,et al.  Polyketide synthase thioesterases catalyze rapid hydrolysis of peptidyl thioesters. , 2009, Bioorganic & medicinal chemistry letters.

[2]  Jason W. Labonte,et al.  Characterization of a fungal thioesterase having Claisen cyclase and deacetylase activities in melanin biosynthesis. , 2012, Chemistry & biology.

[3]  J. Trauger,et al.  Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase. , 2001, Biochemistry.

[4]  T. Mukhtar,et al.  Chimeric streptogramin-tyrocidine antibiotics that overcome streptogramin resistance. , 2005, Chemistry & biology.

[5]  P. Güntert,et al.  Structural basis for the selectivity of the external thioesterase of the surfactin synthetase , 2008, Nature.

[6]  M. Marahiel,et al.  Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase , 2000, Nature.

[7]  T. Blundell,et al.  Structural Basis for the Activity and Substrate Specificity of Fluoroacetyl-CoA Thioesterase FlK , 2010, The Journal of Biological Chemistry.

[8]  Patrick Caffrey,et al.  Conserved Amino Acid Residues Correlating With Ketoreductase Stereospecificity in Modular Polyketide Synthases , 2003, Chembiochem : a European journal of chemical biology.

[9]  Michael D. Burkart,et al.  Biomimetic synthesis and optimization of cyclic peptide antibiotics , 2002, Nature.

[10]  J B McAlpine,et al.  An erythromycin analog produced by reprogramming of polyketide synthesis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  C. Walsh,et al.  Dynamic thiolation–thioesterase structure of a non-ribosomal peptide synthetase , 2008, Nature.

[12]  Janet L. Smith,et al.  Biochemical and structural characterization of the tautomycetin thioesterase: analysis of a stereoselective polyketide hydrolase. , 2010, Angewandte Chemie.

[13]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[14]  P. Brian,et al.  Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. , 2006, Chemistry & biology.

[15]  Wei Zhang,et al.  Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases , 2014, Proceedings of the National Academy of Sciences.

[16]  C. Townsend,et al.  Polyketide proofreading by an acyltransferase-like enzyme. , 2012, Chemistry & biology.

[17]  R. Firn,et al.  Natural products--a simple model to explain chemical diversity. , 2003, Natural product reports.

[18]  P. Leadlay,et al.  Role of type II thioesterases: evidence for removal of short acyl chains produced by aberrant decarboxylation of chain extender units. , 2001, Chemistry & biology.

[19]  Jie Liang,et al.  CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues , 2006, Nucleic Acids Res..

[20]  W. Gerwick,et al.  Structure of Curacin A, a Novel Antimitotic, Antiproliferative and Brine Shrimp Toxic Natural Product from the Marine Cyanobacterium Lyngbya majuscula , 1994 .

[21]  Camilla M. Kao,et al.  GAIN OF FUNCTION MUTAGENESIS OF THE ERYTHROMYCIN POLYKETIDE SYNTHASE. 2. ENGINEERED BIOSYNTHESIS OF AN EIGHT-MEMBERED RING TETRAKETIDE LACTONE , 1997 .

[22]  Lars-Oliver Essen,et al.  Crystal Structure of the Termination Module of a Nonribosomal Peptide Synthetase , 2008, Science.

[23]  Timothy L. Foley,et al.  The unusual macrocycle forming thioesterase of mycolactone. , 2008, Molecular bioSystems.

[24]  S. Faeth,et al.  Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. , 2006, Journal of natural products.

[25]  M. Bibb,et al.  Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes , 2011, BMC Genomics.

[26]  K. Reynolds,et al.  The hidden steps of domain skipping: macrolactone ring size determination in the pikromycin modular polyketide synthase. , 2002, Chemistry & biology.

[27]  Gitanjali Yadav,et al.  Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. , 2003, Journal of molecular biology.

[28]  Gitanjali Yadav,et al.  Towards Prediction of Metabolic Products of Polyketide Synthases: An In Silico Analysis , 2009, PLoS Comput. Biol..

[29]  G. Challis,et al.  Structure and Function of the RedJ Protein, a Thioesterase from the Prodiginine Biosynthetic Pathway in Streptomyces coelicolor* , 2011, The Journal of Biological Chemistry.

[30]  F. Trail,et al.  Characterization of Two Polyketide Synthase Genes Involved in Zearalenone Biosynthesis in Gibberella zeae , 2006, Applied and Environmental Microbiology.

[31]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[32]  David C. Cantu,et al.  Thioesterases: A new perspective based on their primary and tertiary structures , 2010, Protein science : a publication of the Protein Society.

[33]  S. Barluenga,et al.  Hsp90 inhibition with resorcyclic acid lactones (RALs). , 2009, Current topics in medicinal chemistry.

[34]  Jason W. Labonte,et al.  Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis , 2010, Proceedings of the National Academy of Sciences.

[35]  B A Pfeifer,et al.  Biosynthesis of Complex Polyketides in a Metabolically Engineered Strain of E. coli , 2001, Science.

[36]  K. Gademann,et al.  Isolation and structure determination of two microcystins and sequence comparison of the McyABC adenylation domains in Planktothrix species. , 2008, Journal of natural products.

[37]  L. Kay,et al.  NMR spectroscopy brings invisible protein states into focus. , 2009, Nature chemical biology.

[38]  L. Du,et al.  PKS and NRPS release mechanisms. , 2010, Natural product reports.

[39]  C. Khosla,et al.  Engineered biosynthesis of novel polyketides. , 1993, Science.

[40]  S. Bruner,et al.  Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases. , 2011, Chemistry & biology.

[41]  Camilla M. Kao,et al.  Engineered Biosynthesis of Structurally Diverse Tetraketides by a Trimodular Polyketide Synthase , 1996 .

[42]  Janet L. Smith,et al.  Structural basis for macrolactonization by the pikromycin thioesterase , 2006, Nature chemical biology.

[43]  P. Leadlay,et al.  Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. , 1995, Science.

[44]  S. Hammes-Schiffer,et al.  Catalytic efficiency of enzymes: a theoretical analysis. , 2013, Biochemistry.

[45]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[46]  A. Keatinge-Clay,et al.  Employing a polyketide synthase module and thioesterase in the semipreparative biocatalysis of diverse triketide pyrones , 2012 .

[47]  M. Marahiel,et al.  Synthesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics. , 2004, Journal of the American Chemical Society.

[48]  A. Cavalli,et al.  Insights into protein-protein and enzyme-substrate interactions in modular polyketide synthases. , 2010, Chemistry & biology.

[49]  M. Marahiel,et al.  Chemoenzymatic approach to enantiopure streptogramin B variants: characterization of stereoselective pristinamycin I cyclase from Streptomyces pristinaespiralis. , 2005, Journal of the American Chemical Society.

[50]  J. Bennett,et al.  Fungal secondary metabolism — from biochemistry to genomics , 2005, Nature Reviews Microbiology.

[51]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[52]  L. Mandolini,et al.  Ring closure reactions of bifunctional chain molecules , 1981 .

[53]  H. Reichenbach,et al.  Gephyronic acid, a novel inhibitor of eukaryotic protein synthesis from Archangium gephyra (myxobacteria). Production, isolation, physico-chemical and biological properties, and mechanism of action. , 1995, The Journal of antibiotics.

[54]  Angelica O. Zabala,et al.  Fungal Polyketide Synthase Product Chain-Length Control by Partnering Thiohydrolase , 2014, ACS chemical biology.

[55]  Rahul M Kohli,et al.  Enzymology of acyl chain macrocyclization in natural product biosynthesis. , 2003, Chemical communications.

[56]  Peter Wipf,et al.  Terminal Alkene Formation by the Thioesterase of Curacin A Biosynthesis , 2011, The Journal of Biological Chemistry.

[57]  M. Marahiel,et al.  Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  C. Walsh,et al.  Essential PchG-Dependent Reduction in Pyochelin Biosynthesis of Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[59]  A. Goldman,et al.  Of barn owls and bankers: a lush variety of α/β hydrolases , 1999 .

[60]  J. Vederas,et al.  Insights into Radicicol Biosynthesis via Heterologous Synthesis of Intermediates and Analogs* , 2010, The Journal of Biological Chemistry.

[61]  D. Cane,et al.  Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. , 1999, Chemistry & biology.

[62]  M. Nishida,et al.  Nature of Monocyclic β‐Lactam Antibiotic Nocardicin A to β‐Lactamases , 1988 .

[63]  D. Sherman,et al.  Chemoenzymatic synthesis of cryptophycin anticancer agents by an ester bond-forming non-ribosomal peptide synthetase module. , 2011, Journal of the American Chemical Society.

[64]  C. Walsh,et al.  In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. , 2001, Biochemistry.

[65]  A. Maier,et al.  Apralactone A and a New Stereochemical Class of Curvularins from the Marine-Derived Fungus Curvularia sp. , 2008, European journal of organic chemistry.

[66]  Guido Sauter,et al.  A Polylinker Approach to Reductive Loop Swaps in Modular Polyketide Synthases , 2008, Chembiochem : a European journal of chemical biology.

[67]  Katharine R. Watts,et al.  Comparative Analysis of the Substrate Specificity of trans- versus cis-Acyltransferases of Assembly Line Polyketide Synthases , 2014, Biochemistry.

[68]  J. Rizo,et al.  Constrained peptides: models of bioactive peptides and protein substructures. , 1992, Annual review of biochemistry.

[69]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[70]  J B McAlpine,et al.  Modular organization of genes required for complex polyketide biosynthesis. , 1991, Science.

[71]  C. Walsh,et al.  Structural insights into nonribosomal peptide enzymatic assembly lines. , 2009, Natural product reports.

[72]  H. Witkowska,et al.  Reengineering the specificity of a serine active-site enzyme. Two active-site mutations convert a hydrolase to a transferase. , 1994, The Journal of biological chemistry.

[73]  J. Schrag,et al.  Different Active‐Site Loop Orientation in Serine Hydrolases versus Acyltransferases , 2011, Chembiochem : a European journal of chemical biology.

[74]  A. Fersht Enzyme structure and mechanism , 1977 .

[75]  I. Molnár,et al.  Thioesterase domains of fungal nonreducing polyketide synthases act as decision gates during combinatorial biosynthesis. , 2013, Journal of the American Chemical Society.

[76]  Wei Zhang,et al.  Characterization of the Biosynthetic Genes for 10,11-Dehydrocurvularin, a Heat Shock Response-Modulating Anticancer Fungal Polyketide from Aspergillus terreus , 2013, Applied and Environmental Microbiology.

[77]  Wei Xu,et al.  Structural analysis of protein–protein interactions in type I polyketide synthases , 2013, Critical reviews in biochemistry and molecular biology.

[78]  John R Carney,et al.  Rational design and assembly of synthetic trimodular polyketide synthases. , 2007, Chemistry & biology.

[79]  I. Molnár,et al.  Insights into the Biosynthesis of 12-Membered Resorcylic Acid Lactones from Heterologous Production in Saccharomyces cerevisiae , 2014, ACS chemical biology.

[80]  J. Vederas,et al.  A fungal ketoreductase domain that displays substrate-dependent stereospecificity , 2011, Nature chemical biology.

[81]  Yi Tang,et al.  A thioesterase from an iterative fungal polyketide synthase shows macrocyclization and cross coupling activity and may play a role in controlling iterative cycling through product offloading. , 2009, Biochemistry.

[82]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[83]  K. Gademann,et al.  Isolation and structure determination of two microcystins and sequence comparison of the McyABC aenylation domains in Planktothrix species , 2008 .

[84]  R. Thomas A Biosynthetic Classification of Fungal and Streptomycete Fused‐Ring Aromatic Polyketides , 2001, Chembiochem : a European journal of chemical biology.

[85]  M. Marahiel,et al.  The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide. , 2006, Journal of molecular biology.

[86]  Dafna M. Abelson,et al.  Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts. , 2006, ACS chemical biology.

[87]  J. Corton,et al.  Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor β. , 1998, Endocrinology.

[88]  Tilmann Weber,et al.  Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution , 2007, BMC Evolutionary Biology.

[89]  C. Boddy,et al.  Resorcylic acid lactone biosynthesis relies on a stereotolerant macrocyclizing thioesterase. , 2014, Organic letters.

[90]  M. Marahiel,et al.  Ribosome‐independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity , 2012, FEBS letters.

[91]  C. Hertweck,et al.  Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. , 2003, Chemistry & biology.

[92]  C. Walsh,et al.  Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: In vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF. , 1999, Biochemistry.

[93]  L. Miercke,et al.  Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: Versatility from a unique substrate channel , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[94]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[95]  Kyle R. Conway,et al.  ClusterMine360: a database of microbial PKS/NRPS biosynthesis , 2012, Nucleic Acids Res..

[96]  Mark Horsman,et al.  6-Deoxyerythronolide B synthase thioesterase-catalyzed macrocyclization is highly stereoselective. , 2012, Organic letters.

[97]  R. Müller,et al.  Biosynthesis of crocacin involves an unusual hydrolytic release domain showing similarity to condensation domains. , 2014, Chemistry & biology.

[98]  J. H. Clements,et al.  Thermodynamic and Structural Effects of Macrocyclization as a Constraining Method in Protein-Ligand Interactions. , 2010, ACS medicinal chemistry letters.

[99]  A. Keatinge-Clay,et al.  The structures of type I polyketide synthases. , 2012, Natural product reports.

[100]  D. Cane,et al.  Expression, site-directed mutagenesis, and steady state kinetic analysis of the terminal thioesterase domain of the methymycin/picromycin polyketide synthase. , 2002, Biochemistry.

[101]  G. Challis,et al.  Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. , 2000, Chemistry & biology.

[102]  C Richard Hutchinson,et al.  A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. , 2003, Biochemistry.

[103]  F. Kopp,et al.  Chemoenzymatic design of acidic lipopeptide hybrids: new insights into the structure-activity relationship of daptomycin and A54145. , 2006, Biochemistry.

[104]  John R Carney,et al.  Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes , 2005, Nature Biotechnology.

[105]  Janet L. Smith,et al.  Structural and mechanistic insights into polyketide macrolactonization from polyketide-based affinity labels , 2006, Nature chemical biology.

[106]  R. Stroud,et al.  Insights into channel architecture and substrate specificity from crystal structures of two macrocycle-forming thioesterases of modular polyketide synthases. , 2002, Biochemistry.

[107]  M. Holmquist,et al.  Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. , 2000, Current protein & peptide science.

[108]  J R Jacobsen,et al.  Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. , 1997, Science.

[109]  M. Wang,et al.  Examining the role of hydrogen bonding interactions in the substrate specificity for the loading step of polyketide synthase thioesterase domains. , 2008, Biochemistry.

[110]  Christopher N. Boddy,et al.  Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides , 2014, Journal of Industrial Microbiology & Biotechnology.

[111]  Claus Lundegaard,et al.  NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features , 2010, PloS one.

[112]  C. Gustafsson,et al.  Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[113]  P. Leadlay,et al.  Covalent Linkage Mediates Communication between ACP and TE Domains in Modular Polyketide Synthases , 2008, Chembiochem : a European journal of chemical biology.

[114]  D. Rai,et al.  Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics. , 2008, Chemistry and Biology.

[115]  Camilla M. Kao,et al.  Manipulation of macrolide ring size by directed mutagenesis of a modular polyketide synthase , 1995 .

[116]  Daniel W. Udwary,et al.  A method for prediction of the locations of linker regions within large multifunctional proteins, and application to a type I polyketide synthase. , 2002, Journal of molecular biology.

[117]  Jean-Michel Claverie,et al.  Phylogeny.fr: robust phylogenetic analysis for the non-specialist , 2008, Nucleic Acids Res..

[118]  C M Kao,et al.  Engineered biosynthesis of a complete macrolactone in a heterologous host. , 1994, Science.

[119]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[120]  J M Ligon,et al.  The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. , 2000, Chemistry & biology.

[121]  C. Boddy,et al.  The thioesterase domain from the pimaricin and erythromycin biosynthetic pathways can catalyze hydrolysis of simple thioester substrates. , 2007, Bioorganic & medicinal chemistry letters.

[122]  P. Visca,et al.  Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[123]  Nicole M. Gaudelli,et al.  Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis , 2014, Nature chemical biology.

[124]  C. Boddy,et al.  An Evolutionary Model Encompassing Substrate Specificity and Reactivity of Type I Polyketide Synthase Thioesterases , 2014, Chembiochem : a European journal of chemical biology.

[125]  C. Walsh,et al.  Interdomain communication between the thiolation and thioesterase domains of EntF explored by combinatorial mutagenesis and selection. , 2006, Chemistry & biology.

[126]  F. Kopp,et al.  Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. , 2007, Natural product reports.

[127]  M. Marahiel,et al.  Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. , 2002, Structure.

[128]  Rajesh S. Gokhale,et al.  In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites , 2008, BMC Bioinformatics.