Cauchy Problem for Hyper-Parabolic Partial Differential Equations
暂无分享,去创建一个
[1] J. Neuringer. Closed‐Form Solution of the Differential Equation (∂2∂x∂y+ax∂∂x+by ∂∂y+cxy+∂∂t)P=0 Subject to the Initial Condition P(x, y, t = 0) = Φ(x, y) , 1969 .
[2] Ralph E. Showalter,et al. The final value problem for evolution equations , 1974 .
[3] H. N. Mülthei. Initial‐Value Problem for the Equation(∂∂t + a(t,x,y)∂∂x + b(t,x,y)∂∂y + c(t,x,y) + d(t,x,y)∂2∂x∂y)u=f(t,x,y) in the Complex Domain , 1970 .
[4] H. Neunzert,et al. Pseudoparabolische Differentialgleichungen mit charakteristischen Vorgaben im komplexen Gebiet , 1969 .
[5] Elias C. Aifantis,et al. On a proposal for a continuum with microstructure , 1982 .
[6] S. Steinberg,et al. Pseudo-Fokker Planck equations and hyperdifferential operators , 1970 .
[7] P. Lambropoulos. Solution of the Differential Equation (∂2∂x∂y+ax∂∂x+by∂∂y+cxy+∂∂t)P=0 , 1967 .
[8] L. Payne,et al. Some general remarks on improperly posed problems for partial differential equations , 1973 .
[9] Richard E. Ewing,et al. The Approximation of Certain Parabolic Equations Backward in Time by Sobolev Equations , 1975 .
[10] The solution of the moment equations associated with a partial differential equation with polynomial coefficients , 1973 .