Classical formulations of the electromagnetic self-force of extended charged bodies

[1]  F. Rohrlich Classical Charged Particles , 2020 .

[2]  J. Jiménez,et al.  Models of the Classical Electron after a Century , 2014 .

[3]  O. J. Luiten,et al.  Classical formulations of the electromagnetic self-force of extended charged bodies , 2013, 1303.1696.

[4]  O. J. Luiten,et al.  Ponderomotive manipulation of cold subwavelength plasmas. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  R. Hammond Electrodynamics and Radiation Reaction , 2011, 1110.2464.

[6]  U. Leonhardt,et al.  Exact solution for the Casimir stress in a spherically symmetric medium , 2011, 1107.0432.

[7]  Gianluca Geloni,et al.  Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches , 2011, Optics + Optoelectronics.

[8]  Stephen N. Lyle Self-Force and Inertia , 2010 .

[9]  R. Mann,et al.  Rigid motion revisited: rigid quasilocal frames , 2008, 0810.0072.

[10]  A. A. Martins,et al.  On the Electromagnetic Origin of Inertia and Inertial Mass , 2008, 0802.0284.

[11]  E. Pierce The lock and key paradox and the limits of rigidity in special relativity , 2007 .

[12]  H. Puthoff Casimir Vacuum Energy and the Semiclassical Electron , 2006, physics/0610042.

[13]  G. A. D. Parga,et al.  A Physical Deduction of an Equivalent Landau–Lifshitz Equation of Motion in Classical Electrodynamics. A New Expression for the Large Distance Radiation Rate of Energy , 2006 .

[14]  D. Villarroel Enlarged Lorentz–Dirac equations , 2006 .

[15]  R. Medina Radiation reaction of a classical quasi-rigid extended particle , 2005, physics/0508031.

[16]  A. Kholmetskii On “Gauge Renormalization” in Classical Electrodynamics , 2005, physics/0503075.

[17]  E. Rosenthal,et al.  Calculation of the self force using the extended-object approach , 2003, gr-qc/0309102.

[18]  F. Rohrlich,et al.  Dynamics of a classical quasi-point charge , 2002 .

[19]  J. Jiménez,et al.  An Alternative Approach to the Classical Dynamics of an Extended Charged Particle , 2002 .

[20]  G. Compagno,et al.  Self-dressing and radiation reaction in classical electrodynamics , 2002 .

[21]  W. Zachary,et al.  The Classical Electron Problem , 2001, physics/0405131.

[22]  S. Bosanac General classical solution for dynamics of charges with radiation reaction , 2001 .

[23]  V. Hnizdo The electromagnetic self-force on a charged spherical body slowly undergoing a small, temporary displacement from a position of rest , 2000, math-ph/0005014.

[24]  M. Oliver Classical electrodynamics of a point particle , 1998 .

[25]  J. Jiménez,et al.  On the classical dynamics of non-rotating extended charges , 1993 .

[26]  Nal,et al.  Relativistic theory of the Lamb shift in self-field quantum electrodynamics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[27]  G. W. Ford,et al.  RADIATION REACTION IN ELECTRODYNAMICS AND THE ELIMINATION OF RUNAWAY SOLUTIONS , 1991 .

[28]  B. Dwork Generalized Hypergeometric Functions , 1990 .

[29]  J. Dowling,et al.  QED Based on Self-Fields: A Relativistic Calculation of g-2 , 1989 .

[30]  Dowling,et al.  Quantum electrodynamics based on self-energy: Spontaneous emission in cavities. , 1987, Physical review. A, General physics.

[31]  K. Milton,et al.  Semiclassical electron models: Casimir self-stress in dielectric and conducting balls , 1980 .

[32]  J. Schwinger,et al.  Casimir self-stress on a perfectly conducting spherical shell , 1978 .

[33]  E. Hansen A Table of Series and Products , 1977 .

[34]  I. Senitzky Radiation-Reaction and Vacuum-Field Effects in Heisenberg-Picture Quantum Electrodynamics , 1973 .

[35]  P. Milonni,et al.  Interpretation of Radiative Corrections in Spontaneous Emission , 1973 .

[36]  P. Knight,et al.  Radiation Reaction and Radiative Frequency Shifts , 1973 .

[37]  B. Davies Quantum Electromagnetic Zero‐Point Energy of a Conducting Spherical Shell , 1972 .

[38]  Timothy H. Boyer,et al.  QUANTUM ELECTROMAGNETIC ZERO-POINT ENERGY OF A CONDUCTING SPHERICAL SHELL AND THE CASIMIR MODEL FOR A CHARGED PARTICLE. , 1968 .

[39]  I. Prigogine,et al.  Motion of a relativistic charged particle. II , 1963 .

[40]  M. Weinstein,et al.  The Self-Oscillations of a Charged Particle , 1948 .

[41]  Paul Adrien Maurice Dirac,et al.  Classical theory of radiating electrons , 1938 .

[42]  E. Fermi Sulla Dinamica Di Un Sistema Rigido Di Cariche Elettriche In Moto Traslatorio , 1921 .

[43]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[44]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[45]  Sabrina Eberhart,et al.  Methods Of Theoretical Physics , 2016 .

[46]  A. Yaghjian Relativistic Dynamics of a Charged Sphere , 2006 .

[47]  M. Mecklenburg,et al.  From classical to relativistic mechanics : Electromagnetic models of the electron , 2006 .

[48]  J. R. Lucas Electromagnetic Theory - , 2001 .

[49]  A. Posilicano,et al.  On the point limit of the Pauli-Fierz model , 1999 .

[50]  T. Erber The Classical Theories of Radiation Reaction , 1961 .

[51]  K. Wildermuth Zur physikalischen Interpretation der Elektronenselbstbeschleunigung , 1955 .

[52]  H. Casimir Introductory remarks on quantum electrodynamics , 1953 .

[53]  L. Rosenfeld,et al.  Theory of electrons , 1951 .

[54]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[55]  E. Fermi Correzione di una contraddizione tra la teoria elettrodinamica e quella relativistica delle masse elettromagnetiche , 1923 .

[56]  M. Born Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips , 1909 .

[57]  G. Schott Über den Einfluß von Unstetigkeiten bei der Bewegung von Elektronen , 1908 .

[58]  Max Abraham,et al.  Prinzipien der Dynamik des Elektrons , 1902 .

[59]  J. Swinburne Electromagnetic Theory , 1894, Nature.