Classical formulations of the electromagnetic self-force of extended charged bodies
暂无分享,去创建一个
[1] F. Rohrlich. Classical Charged Particles , 2020 .
[2] J. Jiménez,et al. Models of the Classical Electron after a Century , 2014 .
[3] O. J. Luiten,et al. Classical formulations of the electromagnetic self-force of extended charged bodies , 2013, 1303.1696.
[4] O. J. Luiten,et al. Ponderomotive manipulation of cold subwavelength plasmas. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] R. Hammond. Electrodynamics and Radiation Reaction , 2011, 1110.2464.
[6] U. Leonhardt,et al. Exact solution for the Casimir stress in a spherically symmetric medium , 2011, 1107.0432.
[7] Gianluca Geloni,et al. Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches , 2011, Optics + Optoelectronics.
[8] Stephen N. Lyle. Self-Force and Inertia , 2010 .
[9] R. Mann,et al. Rigid motion revisited: rigid quasilocal frames , 2008, 0810.0072.
[10] A. A. Martins,et al. On the Electromagnetic Origin of Inertia and Inertial Mass , 2008, 0802.0284.
[11] E. Pierce. The lock and key paradox and the limits of rigidity in special relativity , 2007 .
[12] H. Puthoff. Casimir Vacuum Energy and the Semiclassical Electron , 2006, physics/0610042.
[13] G. A. D. Parga,et al. A Physical Deduction of an Equivalent Landau–Lifshitz Equation of Motion in Classical Electrodynamics. A New Expression for the Large Distance Radiation Rate of Energy , 2006 .
[14] D. Villarroel. Enlarged Lorentz–Dirac equations , 2006 .
[15] R. Medina. Radiation reaction of a classical quasi-rigid extended particle , 2005, physics/0508031.
[16] A. Kholmetskii. On “Gauge Renormalization” in Classical Electrodynamics , 2005, physics/0503075.
[17] E. Rosenthal,et al. Calculation of the self force using the extended-object approach , 2003, gr-qc/0309102.
[18] F. Rohrlich,et al. Dynamics of a classical quasi-point charge , 2002 .
[19] J. Jiménez,et al. An Alternative Approach to the Classical Dynamics of an Extended Charged Particle , 2002 .
[20] G. Compagno,et al. Self-dressing and radiation reaction in classical electrodynamics , 2002 .
[21] W. Zachary,et al. The Classical Electron Problem , 2001, physics/0405131.
[22] S. Bosanac. General classical solution for dynamics of charges with radiation reaction , 2001 .
[23] V. Hnizdo. The electromagnetic self-force on a charged spherical body slowly undergoing a small, temporary displacement from a position of rest , 2000, math-ph/0005014.
[24] M. Oliver. Classical electrodynamics of a point particle , 1998 .
[25] J. Jiménez,et al. On the classical dynamics of non-rotating extended charges , 1993 .
[26] Nal,et al. Relativistic theory of the Lamb shift in self-field quantum electrodynamics. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[27] G. W. Ford,et al. RADIATION REACTION IN ELECTRODYNAMICS AND THE ELIMINATION OF RUNAWAY SOLUTIONS , 1991 .
[28] B. Dwork. Generalized Hypergeometric Functions , 1990 .
[29] J. Dowling,et al. QED Based on Self-Fields: A Relativistic Calculation of g-2 , 1989 .
[30] Dowling,et al. Quantum electrodynamics based on self-energy: Spontaneous emission in cavities. , 1987, Physical review. A, General physics.
[31] K. Milton,et al. Semiclassical electron models: Casimir self-stress in dielectric and conducting balls , 1980 .
[32] J. Schwinger,et al. Casimir self-stress on a perfectly conducting spherical shell , 1978 .
[33] E. Hansen. A Table of Series and Products , 1977 .
[34] I. Senitzky. Radiation-Reaction and Vacuum-Field Effects in Heisenberg-Picture Quantum Electrodynamics , 1973 .
[35] P. Milonni,et al. Interpretation of Radiative Corrections in Spontaneous Emission , 1973 .
[36] P. Knight,et al. Radiation Reaction and Radiative Frequency Shifts , 1973 .
[37] B. Davies. Quantum Electromagnetic Zero‐Point Energy of a Conducting Spherical Shell , 1972 .
[38] Timothy H. Boyer,et al. QUANTUM ELECTROMAGNETIC ZERO-POINT ENERGY OF A CONDUCTING SPHERICAL SHELL AND THE CASIMIR MODEL FOR A CHARGED PARTICLE. , 1968 .
[39] I. Prigogine,et al. Motion of a relativistic charged particle. II , 1963 .
[40] M. Weinstein,et al. The Self-Oscillations of a Charged Particle , 1948 .
[41] Paul Adrien Maurice Dirac,et al. Classical theory of radiating electrons , 1938 .
[42] E. Fermi. Sulla Dinamica Di Un Sistema Rigido Di Cariche Elettriche In Moto Traslatorio , 1921 .
[43] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[44] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[45] Sabrina Eberhart,et al. Methods Of Theoretical Physics , 2016 .
[46] A. Yaghjian. Relativistic Dynamics of a Charged Sphere , 2006 .
[47] M. Mecklenburg,et al. From classical to relativistic mechanics : Electromagnetic models of the electron , 2006 .
[48] J. R. Lucas. Electromagnetic Theory - , 2001 .
[49] A. Posilicano,et al. On the point limit of the Pauli-Fierz model , 1999 .
[50] T. Erber. The Classical Theories of Radiation Reaction , 1961 .
[51] K. Wildermuth. Zur physikalischen Interpretation der Elektronenselbstbeschleunigung , 1955 .
[52] H. Casimir. Introductory remarks on quantum electrodynamics , 1953 .
[53] L. Rosenfeld,et al. Theory of electrons , 1951 .
[54] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[55] E. Fermi. Correzione di una contraddizione tra la teoria elettrodinamica e quella relativistica delle masse elettromagnetiche , 1923 .
[56] M. Born. Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips , 1909 .
[57] G. Schott. Über den Einfluß von Unstetigkeiten bei der Bewegung von Elektronen , 1908 .
[58] Max Abraham,et al. Prinzipien der Dynamik des Elektrons , 1902 .
[59] J. Swinburne. Electromagnetic Theory , 1894, Nature.