Evapotranspiration Estimates Derived Using Multi-Platform Remote Sensing in a Semiarid Region

Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed observations. ET is calculated by scaling PET estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) products with downscaled soil moisture derived using the Soil Moisture Ocean Salinity (SMOS) satellite and a second order polynomial regression formula. The MODis-Soil Moisture ET (MOD-SMET) estimates are validated using four flux tower sites in southern Arizona USA, a calibrated empirical ET model, and model output from Version 2 of the North American Land Data Assimilation System (NLDAS-2). Validation against daily eddy covariance ET indicates correlations between 0.63 and 0.83 and root mean square errors (RMSE) between 40 and 96 W/m2. MOD-SMET estimates compare well to the calibrated empirical ET model, with a −0.14 difference in correlation between sites, on average. By comparison, NLDAS-2 models underestimate daily ET compared to both flux towers and MOD-SMET estimates. Our analysis shows the MOD-SMET approach to be effective for estimating ET. Because it requires limited ancillary ground-based data and no site-specific calibration, the method is applicable to regions where ground-based measurements are not available.

[1]  Y. Kerr,et al.  Effective soil moisture sampling depth of L-band radiometry: A case study , 2010 .

[2]  W. Brutsaert On a derivable formula for long-wave radiation from clear skies , 1975 .

[3]  Wade T. Crow,et al.  Impact of Soil Moisture Aggregation on Surface Energy Flux Prediction During SGP'97 , 2002 .

[4]  James P. Verdin,et al.  Actual Evapotranspiration (Water Use) Assessment of the Colorado River Basin at the Landsat Resolution Using the Operational Simplified Surface Energy Balance Model , 2013, Remote. Sens..

[5]  Ramesh K. Singh,et al.  Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska , 2008 .

[6]  T. Schmugge,et al.  Passive microwave remote sensing system for soil moisture: some supporting research , 1989 .

[7]  Terri S. Hogue,et al.  Evaluation of a MODIS triangle-based evapotranspiration algorithm for semi-arid regions , 2013 .

[8]  E. G. Youngs,et al.  Simulation of field water use and crop yield , 1980 .

[9]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[10]  R. Scott,et al.  Insights for empirically modeling evapotranspiration influenced by riparian and upland vegetation in semiarid regions , 2014 .

[11]  John L. Hutson,et al.  Scale‐Dependency of Solute Transport Modeling/GIS Applications , 1996 .

[12]  W. Kustas,et al.  Reliable estimation of evapotranspiration on agricultural fields predicted by the Priestley–Taylor model using soil moisture data from ground and remote sensing observations compared with the Common Land Model , 2011 .

[13]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[14]  Garry Willgoose,et al.  Downscaling of low resolution passive microwave soil moisture observations , 2004 .

[15]  Greg Easson,et al.  Evaluating the Potential of VI-LST Triangle Model for Quantitative Estimation of Soil Moisture using Optical Imagery , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Terri S. Hogue,et al.  Improving Spatial Soil Moisture Representation Through Integration of AMSR-E and MODIS Products , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[17]  T. Andrew Black,et al.  Comparison of regional carbon flux estimates from CO2 concentration measurements and remote sensing based footprint integration , 2008 .

[18]  Albert Olioso,et al.  Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain) , 2009 .

[19]  Reinder A. Feddes,et al.  Simulation model of the water balance of a cropped soil: SWATRE , 1983 .

[20]  Pamela L. Nagler,et al.  Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers , 2005 .

[21]  Yann Kerr,et al.  Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[23]  Randal D. Koster,et al.  The components of a 'SVAT' scheme and their effects on a GCM's hydrological cycle , 1994 .

[24]  S. Kurc,et al.  Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland , 2010 .

[25]  David I. Stannard,et al.  Comparison of Penman‐Monteith, Shuttleworth‐Wallace, and Modified Priestley‐Taylor Evapotranspiration Models for wildland vegetation in semiarid rangeland , 1993 .

[26]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[27]  Mahta Moghaddam,et al.  Effects of fine-scale soil moisture and canopy heterogeneity on energy and water fluxes in a northern temperate mixed forest , 2014 .

[28]  Eric E. Small,et al.  Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland: SOIL MOISTURE VARIATIONS AND FLUXES OF CARBON , 2007 .

[29]  Jie Song,et al.  Estimating Watershed Evapotranspiration with PASS. Part I: Inferring Root-Zone Moisture Conditions Using Satellite Data , 2000 .

[30]  T. Carlson,et al.  A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover , 1994 .

[31]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[32]  Antonio R. Pereira,et al.  Analysis of the Priestley-Taylor parameter , 1992 .

[33]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[34]  H. Pan,et al.  A two-layer model of soil hydrology , 1984 .

[35]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[36]  A. Comrie,et al.  The North American Monsoon , 1997 .

[37]  R. Scott Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems , 2010 .

[38]  Assefa M. Melesse,et al.  A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields , 2007, Sensors (Basel, Switzerland).

[39]  G. D. Jenerette,et al.  Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland , 2009 .

[40]  Ming Xu,et al.  Evapotranspiration models compared on a Sierra Nevada forest ecosystem , 2005, Environ. Model. Softw..

[41]  Wade T. Crow,et al.  An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling , 2011 .

[42]  Pamela L. Nagler,et al.  Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices , 2007 .

[43]  Wout Verhoef,et al.  Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions , 2012 .

[44]  Yan Zhang,et al.  A general predictive model for estimating monthly ecosystem evapotranspiration , 2011 .

[45]  Gautam Bisht,et al.  Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days , 2005 .

[46]  J. Mahfouf,et al.  Comparative Study of Various Formulations of Evaporations from Bare Soil Using In Situ Data , 1991 .

[47]  Albert A. M. Holtslag,et al.  Spatial Heterogeneity of the Soil Moisture Content and Its Impact on Surface Flux Densities and Near-Surface Meteorology , 2002 .

[48]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[50]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[51]  Martha C. Anderson,et al.  Retrieval of an Available Water-Based Soil Moisture Proxy from Thermal Infrared Remote Sensing. Part I: Methodology and Validation , 2009 .

[52]  Albert Olioso,et al.  Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain) , 2009 .

[53]  D. Goodrich,et al.  Sensitivity of riparian ecosystems in arid and semiarid environments to moisture pulses , 2006 .

[54]  R. Scott,et al.  Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland , 2006 .

[55]  Pamela L. Nagler,et al.  Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data , 2005 .

[56]  Wim G.M. Bastiaanssen,et al.  Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model , 2012 .

[57]  W. Bastiaanssen SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey , 2000 .

[58]  K. Renard,et al.  Biomass distribution at grassland and shrubland sites. , 1986 .

[59]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[60]  L. Jiang,et al.  An intercomparison of regional latent heat flux estimation using remote sensing data , 2003 .

[61]  Bo-Hui Tang,et al.  An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation , 2010 .

[62]  Yi Y. Liu,et al.  Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals , 2011 .

[63]  K. Moffett,et al.  Remote Sens , 2015 .

[64]  Alan L. Flint,et al.  Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut , 1991 .

[65]  S. Niemela,et al.  Comparison of surface radiative flux parameterizations Part I : Longwave radiation , 2001 .

[66]  Alfredo R. Huete,et al.  Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation , 1999, Remote Sensing.

[67]  W. J. Shuttleworth,et al.  Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem , 2004 .

[68]  W. Rawls,et al.  Estimating generalized soil-water characteristics from texture , 1986 .

[69]  Terri S. Hogue,et al.  Evaluation of a MODIS-Based Potential Evapotranspiration Product at the Point Scale , 2008 .

[70]  B. Séguin,et al.  Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches , 2005 .

[71]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[72]  R. Scott,et al.  Wide-area ratios of evapotranspiration to precipitation in monsoon- dependent semiarid vegetation communities , 2015 .

[73]  Zhanqing Li,et al.  Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter , 2006 .

[74]  Brian K. Hornbuckle,et al.  Diurnal variation of vertical temperature gradients within a field of maize: implications for Satellite microwave radiometry , 2005, IEEE Geoscience and Remote Sensing Letters.

[75]  M. Hernandeza,et al.  Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed , 2008 .

[76]  Y. Xue,et al.  Modeling of land surface evaporation by four schemes and comparison with FIFE observations , 1996 .

[77]  Hannu Savijärvi,et al.  Comparison of surface radiative flux parameterizations: Part II. Shortwave radiation , 2001 .

[78]  W. Timmermans,et al.  Remotely sensed actual evapotranspiration : implications for groundwater management in Botswana , 1999 .

[79]  D. Sumner Evapotranspiration from successional vegetation in a deforested area of the Lake Wales Ridge, Florida , 1996 .

[80]  D. Hodáňová An introduction to environmental biophysics , 1979, Biologia Plantarum.

[81]  S. Islam,et al.  Estimation of surface evaporation map over Southern Great Plains using remote sensing data , 2001 .

[82]  D. Goodrich,et al.  Event to multidecadal persistence in rainfall and runoff in southeast Arizona , 2008 .

[83]  Suming Jin,et al.  Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information , 2015 .

[84]  Hans Peter Schmid,et al.  Spatial representativeness and the location bias of flux footprints over inhomogeneous areas , 1999 .

[85]  Gautam Bisht,et al.  Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study , 2010 .

[86]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[87]  S. Miller,et al.  Spaceborne soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach , 2003 .

[88]  Kyle Knipper,et al.  Downscaling SMAP and SMOS soil moisture with moderate-resolution imaging spectroradiometer visible and infrared products over southern Arizona , 2017 .

[89]  K. Mitchell,et al.  Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data , 1997 .

[90]  Prasanna H. Gowda,et al.  Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach , 2013 .

[91]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[92]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[93]  M. Lubczynski,et al.  Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes—Sardon study case, Spain , 2005 .

[94]  Le Jiang,et al.  A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations , 1999 .

[95]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[96]  R. Scott Murray,et al.  An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. II. Application to the Lower Colorado River, U.S , 2009, Remote. Sens..

[97]  M. Ek,et al.  Continental‐scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS‐2): 2. Validation of model‐simulated streamflow , 2012 .

[98]  K. Mo,et al.  Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products , 2012 .

[99]  T. Schmugge,et al.  Mapping surface soil moisture with microwave radiometers , 1994 .

[100]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[101]  Vijay P. Singh,et al.  Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions , 2005 .

[102]  Ronglin Tang,et al.  Validating MODIS-derived land surface evapotranspiration with in situ measurements at two AmeriFlux sites in a semiarid region , 2011 .

[103]  Lars Ribbe,et al.  Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study , 2016 .