Nematic Elastomers: Gamma-Limits for Large Bodies and Small Particles
暂无分享,去创建一个
[1] G. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .
[2] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[3] A. DeSimone,et al. Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] Anne Lohrli. Chapman and Hall , 1985 .
[5] A. DeSimone,et al. Stripe--domains in nematic elastomers: old and new , 2005 .
[6] Ian Charles Sage,et al. Liquid Crystal Elastomers , 2003 .
[7] Pierluigi Cesana. Relaxation of Multiwell Energies in Linearized Elasticity and Applications to Nematic Elastomers , 2010 .
[8] S. Müller. Variational models for microstructure and phase transitions , 1999 .
[9] J. Ericksen. Liquid crystals with variable degree of orientation , 1991 .
[10] Antonio DeSimone,et al. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers , 2009, Networks Heterog. Media.
[11] A. Isihara,et al. Theory of Liquid Crystals , 1972 .
[12] Epifanio G. Virga,et al. Variational Theories for Liquid Crystals , 2018 .
[13] Antonio DeSimone,et al. Energy minimizers for large ferromagnetic bodies , 1993 .
[14] E. M. Terentjev,et al. Liquid Crystal Elastomers , 2003 .
[15] D. Monselesan,et al. An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals , 1987 .
[16] Andrea Braides. Relaxation of functionals with constraints on the divergence , 1987, ANNALI DELL UNIVERSITA DI FERRARA.
[17] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[18] P. Gennes,et al. The physics of liquid crystals , 1974 .
[19] I. Fonseca,et al. Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .
[20] P. Bladon,et al. Transitions and instabilities in liquid crystal elastomers. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[21] Andrea Braides. Gamma-Convergence for Beginners , 2002 .
[22] Antonio DeSimone,et al. Macroscopic Response of¶Nematic Elastomers via Relaxation of¶a Class of SO(3)-Invariant Energies , 2002 .
[23] Gianni Dal Maso,et al. An Introduction to [gamma]-convergence , 1993 .
[24] Antonio De Simone,et al. Energy minimizers for large ferromagnetic bodies , 1993 .
[25] A. DeSimone,et al. Elastic energies for nematic elastomers , 2009, The European physical journal. E, Soft matter.
[26] J. Ball,et al. Orientable and non‐orientable director fields for liquid crystals , 2007 .
[27] A. DeSimone,et al. Γ-convergence of energies for nematic elastomers in the small strain limit , 2011 .
[28] Antonio DeSimone,et al. Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications , 2011 .
[29] A. DeSimone,et al. Critical voltages and blocking stresses in nematic gels , 2007, The European physical journal. E, Soft matter.
[30] F. C. Frank,et al. I. Liquid crystals. On the theory of liquid crystals , 1958 .
[31] Stefan Müller,et al. Calculus of Variations and Geometric Evolution Problems , 1999 .