Nematic Elastomers: Gamma-Limits for Large Bodies and Small Particles

We compute the large-body and the small-particle Gamma-limit of a family of energies for nematic elastomers. We work under the assumption of small deformations (linearized kinematics) and consider both compressible and incompressible materials. In the large-body asymptotics, even if we describe the local orientation of the liquid crystal molecules according to the model of perfect order (Frank theory), we prove that we obtain a fully biaxial nematic texture (that of the de Gennes theory) as a by-product of the relaxation phenomenon connected to Gamma-convergence. In the case of small particles, we show that formation of new microstructure is not possible, and we describe the map of minimizers of the Gamma-limit as the phase diagram of the mechanical model.

[1]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[2]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[3]  A. DeSimone,et al.  Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Anne Lohrli Chapman and Hall , 1985 .

[5]  A. DeSimone,et al.  Stripe--domains in nematic elastomers: old and new , 2005 .

[6]  Ian Charles Sage,et al.  Liquid Crystal Elastomers , 2003 .

[7]  Pierluigi Cesana Relaxation of Multiwell Energies in Linearized Elasticity and Applications to Nematic Elastomers , 2010 .

[8]  S. Müller Variational models for microstructure and phase transitions , 1999 .

[9]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[10]  Antonio DeSimone,et al.  Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers , 2009, Networks Heterog. Media.

[11]  A. Isihara,et al.  Theory of Liquid Crystals , 1972 .

[12]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[13]  Antonio DeSimone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[14]  E. M. Terentjev,et al.  Liquid Crystal Elastomers , 2003 .

[15]  D. Monselesan,et al.  An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals , 1987 .

[16]  Andrea Braides Relaxation of functionals with constraints on the divergence , 1987, ANNALI DELL UNIVERSITA DI FERRARA.

[17]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[18]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[19]  I. Fonseca,et al.  Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .

[20]  P. Bladon,et al.  Transitions and instabilities in liquid crystal elastomers. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[22]  Antonio DeSimone,et al.  Macroscopic Response of¶Nematic Elastomers via Relaxation of¶a Class of SO(3)-Invariant Energies , 2002 .

[23]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[24]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[25]  A. DeSimone,et al.  Elastic energies for nematic elastomers , 2009, The European physical journal. E, Soft matter.

[26]  J. Ball,et al.  Orientable and non‐orientable director fields for liquid crystals , 2007 .

[27]  A. DeSimone,et al.  Γ-convergence of energies for nematic elastomers in the small strain limit , 2011 .

[28]  Antonio DeSimone,et al.  Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications , 2011 .

[29]  A. DeSimone,et al.  Critical voltages and blocking stresses in nematic gels , 2007, The European physical journal. E, Soft matter.

[30]  F. C. Frank,et al.  I. Liquid crystals. On the theory of liquid crystals , 1958 .

[31]  Stefan Müller,et al.  Calculus of Variations and Geometric Evolution Problems , 1999 .