Transition metal-complexed catenanes and rotaxanes as molecular machine prototypes.

Transition metal-containing catenanes and rotaxanes are ideally suited to build molecular machines and motors; in the present review article, three examples from our group are discussed which consist of (i) a fast-moving electrochemically-driven pirouetting machine, (ii) a linear rotaxane dimer whose behaviour is reminiscent of muscles, in the sense that it can be stretched or contracted and (iii) a light-driven machine consisting of a catenane constructed around a ruthenium(II) centre.

[1]  Vincenzo Balzani,et al.  Light-powered molecular-scale machines , 2003 .

[2]  Jean-Pierre Sauvage,et al.  Templated synthesis of a rotaxane with a [Ru(diimine)3]2+ core. , 2003, Chemistry.

[3]  T. R. Kelly,et al.  Progress toward a rationally designed, chemically powered rotary molecular motor. , 2007, Journal of the American Chemical Society.

[4]  J. Treadway,et al.  Ruthenium(II) MLCT Excited States. Stabilization toward Ligand Loss in Rigid Media. , 1998, Inorganic chemistry.

[5]  Jean-Pierre Sauvage,et al.  A fast-moving [2]rotaxane whose stoppers are remote from the copper complex core. , 2005, Organic letters.

[6]  S. Tachiyashiki,et al.  Mechanisms of the photosubstitution of ruthenium(II) polypyridine complexes: formation of an intermediate with a monodentate polypyridine ligand and its reactions , 1994 .

[7]  M. Fujita,et al.  Self-Assembly of [2]Catenanes Containing Metals in Their Backbones , 1999 .

[8]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[9]  Bradley D. Smith,et al.  [2]Rotaxane with a cation-binding wheel , 2000 .

[10]  J. Vittal,et al.  Molecular Topology: Easy Self-Assembly of an Organometallic Doubly Braided [2]Catenane. , 2000, Angewandte Chemie.

[11]  Agnieszka Więckowska,et al.  An Electrochemically Controlled Molecular Shuttle , 2004 .

[12]  P. Bortolus,et al.  Photochemistry of tris(2,2′-bipyridine)ruthenium(II) in chlorinated solvents , 1978 .

[13]  Jean-Pierre Sauvage,et al.  Transition‐Metal‐Complexed Molecular Machine Prototypes , 2006 .

[14]  J. S. Choi,et al.  Self-assembly and dynamics of [2]- and [3]rotaxanes with a dinuclear macrocycle containing reversible Os-N coordinate bonds. , 2001, Chemistry.

[15]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[16]  Zhan-Ting Li,et al.  Self-assembly of novel [3]- and [2]rotaxanes based on donor-acceptor and hydrogen-bonding interactions. Intensified inter-ring repulsion interaction and shuttling behavior. , 2003, The Journal of organic chemistry.

[17]  Vincenzo Balzani,et al.  Molecular Devices and Machines– A Journey into the Nano World , 2003 .

[18]  Fritz Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[19]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[20]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[21]  Jean-Pierre Sauvage,et al.  Synthesis and electrochemical studies of catenates: stabilization of low oxidation states by interlocked macrocyclic ligands , 1989 .

[22]  Jean-Pierre Sauvage,et al.  A copper-complexed rotaxane in motion: pirouetting of the ring on the millisecond timescale. , 2004, Chemical communications.

[23]  A. Harada,et al.  Daisy Chain Necklace: Tri[2]rotaxane Containing Cyclodextrins , 2000 .

[24]  Jean-Pierre Sauvage,et al.  Redox Control of the Ring-Gliding Motion in a Cu-Complexed Catenane: A Process Involving Three Distinct Geometries , 1996 .

[25]  N. Bampos,et al.  Thermodynamically self-assembling porphyrin-stoppered rotaxanes , 2001 .

[26]  H. Gibson,et al.  Cooperative self-assembly of dendrimers via pseudorotaxane formation from a homotritopic guest molecule and complementary monotopic host dendrons. , 2002, Journal of the American Chemical Society.

[27]  R. S. Nicholson,et al.  Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. , 1964 .

[28]  R. Nolte,et al.  Synthesis of porphyrin-containing [3]rotaxanes by olefin metathesis. , 2003, Angewandte Chemie.

[29]  David J. Williams,et al.  Acid−Base Controllable Molecular Shuttles† , 1998 .

[30]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[31]  N. Tamaoki,et al.  Synthesis of a mechanically linked oligo[2]rotaxane , 2003 .

[32]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[33]  M. Jiménez,et al.  A Hermaphrodite Molecule: Quantitative Copper(I)‐Directed Formation of a Doubly Threaded Assembly from a Ring Attached to a String , 2000 .

[34]  Kawaguchi,et al.  A cyclodextrin-based molecular shuttle containing energetically favored and disfavored portions in its dumbbell component , 2000, Organic letters.

[35]  Vincenzo Balzani,et al.  Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.

[36]  O. Miyatake,et al.  Blocked photochromism of diarylethenes , 1992 .

[37]  S. J. Loeb,et al.  Channels and cavities lined with interlocked components: metal-based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands. , 2003, Angewandte Chemie.

[38]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[39]  Laurence Raehm,et al.  A Transition Metal Containing Rotaxane in Motion: Electrochemically Induced Pirouetting of the Ring on the Threaded Dumbbell , 1999 .

[40]  Yoshihisa Inoue,et al.  Photoswitching of the association of a permethylated α-cyclodextrin-azobenzene dyad forming a Janus [2]pseudorotaxane☆ , 2001 .

[41]  T. Meyer,et al.  Photochemistry of tris(2,2'-bipyridine)ruthenium(2+) ion , 1982 .

[42]  S. Bossmann,et al.  Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center. , 2001, Accounts of chemical research.

[43]  T. Swager,et al.  A Conducting Poly(cyclophane) and Its Poly([2]-catenane) , 2000 .

[44]  M. Walsh,et al.  Axially coordinated porphyrins as new rotaxanestoppers , 2000 .

[45]  M. O'connell,et al.  Synthesis of fluorescent stilbene and tolan rotaxanes by Suzuki coupling , 2001 .

[46]  Jean-Pierre Sauvage,et al.  Rotaxanes and Catenanes Built Around Octahedral Transition Metals , 2004 .

[47]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[48]  Itamar Willner,et al.  Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. , 2004, Journal of the American Chemical Society.

[49]  T. Swager,et al.  A rotaxane exciplex. , 2001, Journal of the American Chemical Society.

[50]  J. Ripmeester,et al.  Solid Polyrotaxanes of Polyethylene Glycol and Cyclodextrins: The Single Crystal X-ray Structure of PEG−β-cyclodextrin† , 2000 .

[51]  Photosubstitution reactions of Ru(bpy)2XYn+ complexes , 1984 .

[52]  Jean-Pierre Sauvage,et al.  Towards artificial muscles at the nanometric level. , 2003, Chemical communications.

[53]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[54]  Christoph A Schalley,et al.  Novel template effect for the preparation of [2]rotaxanes with functionalised centre pieces. , 2002, Chemical communications.

[55]  M. Pomerantz,et al.  Photosubstitution reactions of terpyridine complexes of ruthenium(II) , 1989 .

[56]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[57]  J. F. Stoddart,et al.  Photo-driven molecular devices. , 2007, Chemical Society reviews.

[58]  T. Takata,et al.  Highly efficient synthesis of [3]- and [5]-rotaxanes consisting of crown ether and a sec-ammonium salt. , 2002, Chemical communications.

[59]  I. Smukste,et al.  Structure-function relationship of amino acid-[2]rotaxanes. , 2003, The Journal of organic chemistry.

[60]  P. Beer,et al.  Anion-templated rotaxane formation. , 2002, Journal of the American Chemical Society.

[61]  V. Böhmer,et al.  Rational synthesis of multicyclic bis[2]catenanes. , 2004, Chemistry.

[62]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[63]  J. F. Stoddart,et al.  Heterosupramolecular chemistry: programmed pseudorotaxane assembly at the surface of a nanocrystal. , 1999, Angewandte Chemie.

[64]  Jonathan L. Sessler,et al.  Bipyrrole-Based [2]Catenane: A New Type of Anion Receptor , 1998 .

[65]  R. Watts,et al.  Photochemistry of tris(2,2'-bipyridyl)ruthenium(II) in aqueous solutions , 1978 .

[66]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[67]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[68]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[69]  Maurizio Licchelli,et al.  Transition Metals as Switches , 1999 .

[70]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[71]  M Venturi,et al.  Artificial molecular-level machines: which energy to make them work? , 2001, Accounts of chemical research.

[72]  Dress,et al.  A photochemically driven molecular-level abacus , 2000, Chemistry.

[73]  Kimoon Kim,et al.  Designed self-assembly of molecular necklaces. , 2002, Journal of the American Chemical Society.

[74]  Kimoon Kim Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. , 2002, Chemical Society reviews.

[75]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[76]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[77]  I. Willner,et al.  Electronically transduced molecular mechanical and information functions on surfaces. , 2001, Accounts of chemical research.

[78]  O. Ito,et al.  Photoinduced intrarotaxane electron transfer between zinc porphyrin and [60]fullerene in benzonitrile. , 2003, Angewandte Chemie.

[79]  Itamar Willner,et al.  A photoactivated 'molecular train' for optoelectronic applications: light-stimulated translocation of a β-cyclodextrin receptor within a stoppered azobenzene-alkyl chain supramolecular monolayer assembly on a Au-electrode , 2001 .

[80]  R. Bilewicz,et al.  Novel [2]catenane structures introducing communication between transition metal centers via pi...pi interactions. , 2001, Journal of the American Chemical Society.

[81]  Harry L Anderson,et al.  Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. , 2002, Angewandte Chemie.

[82]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[83]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[84]  P. Hodge,et al.  1H NMR spectroscopic studies of the structures of a series of pseudopolyrotaxanes formed by “threading” , 2000 .

[85]  J. Sauvage,et al.  Building [2]Catenanes around a Tris(diimine)ruthenium(2+) ([Ru(diimine)~3]^2^+) Complex Core Used as Template , 2003 .

[86]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[87]  Jean-Pierre Sauvage,et al.  Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. , 2004, Angewandte Chemie.

[88]  Y. Fukazawa,et al.  Convenient synthesis of [3]catenane by olefin metathesis dimerizations , 2003 .