Allopurinol Attenuates Left Ventricular Remodeling and Dysfunction After Experimental Myocardial Infarction: A New Action for an Old Drug?

Background—Accumulating evidence suggests a critical role for increased reactive oxygen species (ROS) production in left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). Increased expression of xanthine oxidase (XO), a major source of ROS, has recently been demonstrated in experimental and clinical heart failure; however, a potential role for LV remodeling processes remains unclear. We therefore studied the effect of long-term treatment with allopurinol, a potent XO inhibitor, on myocardial ROS production and LV remodeling and dysfunction after MI. Methods and Results—Mice with extensive anterior MI (n=105) were randomized to treatment with either vehicle or allopurinol (20 mg · kg−1 · d−1 by gavage) for 4 weeks starting on day 1 after surgery. Infarct size was similar among the groups. XO expression and activity were markedly increased in the remote myocardium of mice after MI, as determined by electron spin resonance spectroscopy. Myocardial ROS production was increased after MI but markedly reduced after allopurinol treatment. Importantly, allopurinol treatment substantially attenuated LV cavity dilatation and dysfunction after MI, as assessed by echocardiography, and markedly reduced myocardial hypertrophy and interstitial fibrosis. Conclusion—The present study reveals a novel beneficial effect of treatment with allopurinol, ie, a marked attenuation of LV remodeling processes and dysfunction after experimental MI. Allopurinol treatment therefore represents a potential novel strategy to prevent LV remodeling and dysfunction after MI.

[1]  Gunnar Klein,et al.  Evaluation of left ventricular diastolic function by pulsed Doppler tissue imaging in mice. , 2003, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[2]  H. Drexler,et al.  Role of interleukin‐6 for left ventricular remodeling and survival after experimental myocardial infarction , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  J. Hare,et al.  Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. , 2003, Circulation.

[4]  P. Ponikowski,et al.  Uric Acid and Survival in Chronic Heart Failure: Validation and Application in Metabolic, Functional, and Hemodynamic Staging , 2003, Circulation.

[5]  Steven M Holland,et al.  Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. , 2003, The Journal of clinical investigation.

[6]  D. Harrison,et al.  Vascular Oxidative Stress and Endothelial Dysfunction in Patients With Chronic Heart Failure: Role of Xanthine-Oxidase and Extracellular Superoxide Dismutase , 2002, Circulation.

[7]  Hua Cai,et al.  Role of p47phox in Vascular Oxidative Stress and Hypertension Caused by Angiotensin II , 2002, Hypertension.

[8]  A. Struthers,et al.  Allopurinol Improves Endothelial Dysfunction in Chronic Heart Failure , 2002, Circulation.

[9]  Rainer Hambrecht,et al.  Effects of Xanthine Oxidase Inhibition With Allopurinol on Endothelial Function and Peripheral Blood Flow in Hyperuricemic Patients With Chronic Heart Failure: Results From 2 Placebo-Controlled Studies , 2002, Circulation.

[10]  D. Kass,et al.  Allopurinol Improves Myocardial Efficiency in Patients With Idiopathic Dilated Cardiomyopathy , 2001, Circulation.

[11]  Hiroyuki Tsutsui,et al.  Treatment With Dimethylthiourea Prevents Left Ventricular Remodeling and Failure After Experimental Myocardial Infarction in Mice: Role of Oxidative Stress , 2000, Circulation research.

[12]  D. Kass,et al.  Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. , 1999, Circulation research.

[13]  D. Sawyer,et al.  Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. , 1999, Circulation research.

[14]  E. Marbán,et al.  Novel myofilament Ca2+-sensitizing property of xanthine oxidase inhibitors. , 1998, Circulation research.

[15]  H. Drexler,et al.  Differential effects of kinins on cardiomyocyte hypertrophy and interstitial collagen matrix in the surviving myocardium after myocardial infarction in the rat. , 1997, Circulation.

[16]  E. Marbán,et al.  Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. , 1996, Circulation.

[17]  A. Bradley,et al.  Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Pfeffer,et al.  Ventricular Remodeling After Myocardial Infarction: Experimental Observations and Clinical Implications , 1990, Circulation.