Physiological, biochemical and genetic control of bacterial bioluminescence.

Publisher Summary The bioluminescent bacteria comprise one of several groups of luminous organisms. Significant differences exist between the bioluminescence reactions of different organisms, including the structure and properties of the luciferases and substrates. Molecular oxygen is the only common feature of bioluminescence reactions, indicating that the luminescent systems in most organisms may have evolved independently. Luminescent bacteria are present in marine environment, freshwater, and terrestrial habitats. They can occur as free-living forms, saprophytes, commensal symbionts, parasites of animals, and specific light-organ symbionts. The luminescence produced by these bacteria, because of its inherent beauty and ease of detection, has attracted scientific attention. With the use of molecular approaches to study the luminescence systems of these bacteria, population biology, ecology, and molecular mechanisms of luminescence (lux) gene regulation can be studied. This chapter describes the current status of bioluminescent systems of luminous bacteria, emphasizing the biochemistry, lux gene organization, and the physiological and genetic regulation of lux gene expression. The effects of oxygen on luminescence illustrate the application of bacterial luminescence system as a sensor of specific molecules that affect metabolic function and gene expression. Knowledge of the basic biochemistry, molecular biology, and physiology of luminescent bacteria is thus not only of interest but of importance for future scientific endeavors.

[1]  E. Ruby,et al.  Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes , 1992, Applied and environmental microbiology.

[2]  E. Meighen,et al.  Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Meighen,et al.  Functional identification of the fatty acid reductase components encoded in the luminescence operon of Vibrio fischeri , 1985, Journal of bacteriology.

[4]  G. Schmetterer,et al.  Expression of luciferases from Vibrio harveyi and Vibrio fischeri in filamentous cyanobacteria , 1986, Journal of bacteriology.

[5]  E. Meighen,et al.  LUX C, D AND E GENES OF THE Vibrio fischeri LUMINESCENCE OPERON CODE FOR THE REDUCTASE, TRANSFERASE, AND SYNTHETASE ENZYMES INVOLVED IN ALDEHYDE BIOSYNTHESIS , 1989, Photochemistry and photobiology.

[6]  J. W. Hastings,et al.  BIOLUMINESCENCE FROM THE REACTION OF FMN, H2O2 AND LONG CHAIN ALDEHYDE WITH BACTERIAL LUCIFERASE , 1979 .

[7]  T. Close,et al.  Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58 , 1987, Journal of bacteriology.

[8]  M. Haygood Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes , 1990, Archives of Microbiology.

[9]  M. Pujalte,et al.  Vibrio species in seawater and mussels: abundance and numerical taxonomy , 1989 .

[10]  D. Branton,et al.  Membrane polypeptides co-induced with the bacterial bioluminescent system. , 1977, The Journal of biological chemistry.

[11]  T. Baldwin,et al.  Yellow light emission of Vibrio fischeri strain Y-1: purification and characterization of the energy-accepting yellow fluorescent protein. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Herring,et al.  Polymerase Chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deep-sea anglerfishes , 1992, Journal of the Marine Biological Association of the United Kingdom.

[13]  T. Baldwin,et al.  The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence. , 1989, Journal of bioluminescence and chemiluminescence.

[14]  Regulatory mutants of the Vibrio harveyi lux system , 1989 .

[15]  L. Kricka Clinical and biochemical applications of luciferases and luciferins. , 1988, Analytical biochemistry.

[16]  J. W. Hastings,et al.  Induction of bacterial luciferase by pure oxygen , 1992 .

[17]  Characterization of Non-O1 Serovar Vibrio cholerae (Vibrio albensis) , 1985 .

[18]  T. Baldwin,et al.  Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Riendeau,et al.  Purification of the acyl coenzyme A reductase component from a complex responsible for the reduction of fatty acids in bioluminescent bacteria. Properties and acyltransferase activity. , 1983, The Journal of biological chemistry.

[20]  E. Ruby,et al.  A luminous bacterium that emits yellow light. , 1977, Science.

[21]  E. Greenberg,et al.  Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ , 1992, Journal of bacteriology.

[22]  R. Colwell,et al.  Distribution and Identification of Luminous Bacteria from the Sargasso Sea , 1980, Applied and environmental microbiology.

[23]  E. Meighen,et al.  Induced polypeptide synthesis during the development of bacterial bioluminescence. , 1976, The Journal of biological chemistry.

[24]  T. Baldwin,et al.  Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744 , 1988 .

[25]  Campbell Ak Living light: biochemistry, applications. , 1989 .

[26]  P. Dunlap,et al.  Regulation of luminescence by cyclic AMP in cya-like and crp-like mutants of Vibrio fischeri , 1989, Journal of bacteriology.

[27]  M. Shilo,et al.  Physiological Characteristics Underlying the Distribution Patterns of Luminous Bacteria in the Mediterranean Sea and the Gulf of Elat , 1979, Applied and environmental microbiology.

[28]  J. Oliver,et al.  Bioluminescence in a strain of the human pathogenic bacterium Vibrio vulnificus , 1986, Applied and environmental microbiology.

[29]  G. Sayler,et al.  Rapid, Sensitive Bioluminescent Reporter Technology for Naphthalene Exposure and Biodegradation , 1990, Science.

[30]  D. O'Kane,et al.  The lumazine protein gene in Photobacterium phosphoreum is linked to the lux operon. , 1990, Nucleic acids research.

[31]  M. Silverman,et al.  Regulation of Expression of Bacterial Genes for Bioluminescence , 1986 .

[32]  E. Greenberg,et al.  Critical regions of the Vibrio fischeri luxR protein defined by mutational analysis , 1990, Journal of bacteriology.

[33]  M. Shilo,et al.  Seasonal and Geographic Distribution of Luminous Bacteria in the Eastern Mediterranean Sea and the Gulf of Elat , 1979 .

[34]  E. Ruby,et al.  Luminous Enteric Bacteria of Marine Fishes: a Study of Their Distribution, Densities, and Dispersion , 1979, Applied and environmental microbiology.

[35]  J. Mancini,et al.  A new lux gene in bioluminescent bacteria codes for a protein homologous to the bacterial luciferase subunits. , 1988, Biochemical and biophysical research communications.

[36]  G. Stewart,et al.  Use of bacterial luciferase to establish a promoter probe vehicle capable of nondestructive real-time analysis of gene expression in Bacillus spp , 1987, Journal of bacteriology.

[37]  R. Szittner,et al.  The lux gene of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish , 1991 .

[38]  G S Sayler,et al.  Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions , 1990, Journal of bacteriology.

[39]  S. Denyer,et al.  In vivo bioluminescence: a cellular reporter for research and industry. , 1990, Journal of bioluminescence and chemiluminescence.

[40]  E. Meighen,et al.  Identification of the acyl transfer site of fatty acyl-protein synthetase from bioluminescent bacteria. , 1991, Journal of molecular biology.

[41]  T. M. Skerman,et al.  A taxonomic study by computer analysis of marine bacteria from New Zealand waters , 1973 .

[42]  Kenneth H. Nealson,et al.  Luminous bacteria of a monocentrid fish (Monocentris japonicus) and two anomalopid fishes (Photoblepharon palpebratus and Kryptophanaron alfredi): population sizes and growth within the light organs, and rates of release into the seawater , 1984 .

[43]  S. Ulitzur,et al.  The transcription of bacterial luminescence is regulated by sigma 32. , 1988, Journal of bioluminescence and chemiluminescence.

[44]  O. Shimomura,et al.  The aldehyde content of luminous bacteria and of an "aldehydeless" dark mutant. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[45]  N. Sonenberg,et al.  Construction of a fused LuxAB gene by site-directed mutagenesis. , 1989, Journal of bioluminescence and chemiluminescence.

[46]  E. Meighen,et al.  Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. , 1989, The Journal of biological chemistry.

[47]  J. V. Lee,et al.  Ecology of Vibrio species, including Vibrio cholerae, in natural waters in Kent, England. , 1982, The Journal of applied bacteriology.

[48]  T. Baldwin,et al.  Cloning and expression of the luxY gene from Vibrio fischeri strain Y-1 in Escherichia coli and complete amino acid sequence of the yellow fluorescent protein. , 1990, Biochemistry.

[49]  S. Henikoff,et al.  Finding protein similarities with nucleotide sequence databases. , 1990, Methods in enzymology.

[50]  E. Meighen,et al.  A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon , 1990, Journal of bacteriology.

[51]  J. W. Hastings,et al.  Reversible steps in the reaction of aldehydes with bacterial luciferase intermediates. , 1979, Archives of biochemistry and biophysics.

[52]  C. Higgins,et al.  A novel, non‐invasive promoter probe vector: cloning of the osmoregulated proU promoter of Escherichia coli K12 , 1989, Molecular microbiology.

[53]  R. Losick,et al.  Visualizing gene expression in time and space in the filamentous bacterium Streptomyces coelicolor. , 1988, Science.

[54]  A. Chakrabarty,et al.  The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes , 1989, Journal of bacteriology.

[55]  P. Dunlap,et al.  How are growth and luminescence regulated independently in light organ symbionts , 1987 .

[56]  E. Meighen,et al.  [7] Cloning and expression of the genes from the bioluminescent system of marine bacteria , 1986 .

[57]  Kenzi Suzuki,et al.  O2 incorporation into a long-chain fatty acid during bacterial luminescence , 1983 .

[58]  T. Baldwin,et al.  The Vibrio fischeri LuxR protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene , 1991, Journal of bacteriology.

[59]  H. Seliger,et al.  THE EVOLUTION OF BIOLUMINESCENCE IN BACTERIA , 1987 .

[60]  Meighen Ea,et al.  Flavine specificity of enzyme-substrate intermediates in the bacterial bioluminescent reaction. Structural requirements of the flavine side chain. , 1973 .

[61]  E. Meighen,et al.  Subunit structure of the fatty acid reductase complex from Photobacterium phosphoreum , 1986 .

[62]  C. Wolfe,et al.  Restriction Fragment Length Polymorphism Analysis Reveals High Levels of Genetic Divergence Among the Light Organ Symbionts of Flashlight Fish. , 1991, The Biological bulletin.

[63]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[64]  O. Nilsson,et al.  Novel monomeric luciferase enzymes as tools to study plant gene regulation in vivo. , 1990, Journal of bioluminescence and chemiluminescence.

[65]  J. W. Hastings,et al.  The oxidation of reduced flavin mononucleotide by molecular oxygen. , 1962, The Biochemical journal.

[66]  M. Fontecave,et al.  NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. , 1987, The Journal of biological chemistry.

[67]  E. Greenberg,et al.  Overproduction and purification of the luxR gene product: Transcriptional activator of the Vibrio fischeri luminescence system. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[68]  K. Nealson,et al.  Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens , 1990, Journal of bacteriology.

[69]  M. Gambello,et al.  Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression , 1991, Journal of bacteriology.

[70]  J. W. Hastings,et al.  Mutationally altered bacterial luciferase. Implications for subunit functions. , 1972, Biochemistry.

[71]  Control of the lux regulon of Vibrio fischeri. , 1990, Journal of bioluminescence and chemiluminescence.

[72]  A. Farghaly Factors influencing the growth and light production of luminous bacteria. , 1950, Journal of cellular and comparative physiology.

[73]  E. Ruby,et al.  Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. , 1991, Science.

[74]  M. Karp Expression of bacterial luciferase genes from Vibrio harveyi in Bacillus subtilis and in Escherichia coli. , 1989, Biochimica et biophysica acta.

[75]  J. Shaw Transposon Tn4431 mutagenesis of Xanthomonas campestris pv. campestris : characterization of a nonpathogenic mutant and cloning of a locus for pathogenicity , 1988 .

[76]  J. V. Lee,et al.  A numerical taxonomic study of species of Vibrio isolated from the aquatic environment and birds in Kent, England. , 1983, The Journal of applied bacteriology.

[77]  A. Cohen,et al.  Use of a bioluminescence gene reporter for the investigation of red-dependent and gam-dependent plasmid recombination in Escherichia coli K12. , 1988, Journal of molecular biology.

[78]  M. Simon,et al.  Cloning of the Vibrio harveyi luciferase genes: use of a synthetic oligonucleotide probe. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[79]  D. Riendeau,et al.  Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. , 1982, The Journal of biological chemistry.

[80]  V. Vandegrift,et al.  The nucleotide sequence of the luxA and luxB genes of Xenorhabdus luminescens HM and a comparison of the amino acid sequences of luciferases from four species of bioluminescent bacteria. , 1990, Biochemical and biophysical research communications.

[81]  P. Dunlap,et al.  Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein , 1992, Journal of bacteriology.

[82]  E. Ruby,et al.  Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. , 1976, The Biological bulletin.

[83]  E. Meighen,et al.  Comparison of the lux systems in Vibrio harveyi and Vibrio fischeri , 1989 .

[84]  E. Ruby,et al.  A squid that glows in the night: development of an animal-bacterial mutualism , 1992, Journal of bacteriology.

[85]  J. Nicolas,et al.  Use of glucose-6-phosphate dehydrogenase as a new label for nucleic acid hybridization reactions. , 1989, Analytical biochemistry.

[86]  R. Szittner,et al.  Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. , 1990, The Journal of biological chemistry.

[87]  V. Blinov,et al.  Isolation of bioluminescent functions from Photobacterium leiognathi: analysis of luxA, luxB, luxG and neighboring genes. , 1990, Gene.

[88]  T. Baldwin,et al.  Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744 , 1990, Journal of bacteriology.

[89]  P. Dunlap,et al.  Requirement for autoinducer in transcriptional negative autoregulation of the Vibrio fischeri luxR gene in Escherichia coli , 1989, Journal of bacteriology.

[90]  S. Tu,et al.  Cloning and nucleotide sequences of lux genes and characterization of luciferase of Xenorhabdus luminescens from a human wound , 1991, Journal of Bacteriology.

[91]  R. Szittner,et al.  Structure and properties of luciferase from Photobacterium phosphoreum. , 1991, Biochemical and biophysical research communications.

[92]  C. Kado,et al.  Phenotypic Switching Affecting Chemotaxis, Xanthan Production, and Virulence in Xanthomonas campestris , 1990, Applied and environmental microbiology.

[93]  E. Meighen,et al.  Nucleotide sequence of the LuxC gene and the upstream DNA from the bioluminescent system of Vibrio harveyi. , 1988, Nucleic acids research.

[94]  J. W. Hastings,et al.  A time-dependent bacterial bioluminescence emission spectrum in an in vitro single turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[95]  B. Musafia,et al.  Fusion of LuxA and LuxB and its expression in E. coli, S. cerevisiae and D. melanogaster. , 1990, Journal of bioluminescence and chemiluminescence.

[96]  C. Georgopoulos,et al.  The Escherichia coli htrP gene product is essential for bacterial growth at high temperatures: mapping, cloning, sequencing, and transcriptional regulation of htrP , 1991, Journal of bacteriology.

[97]  P. Sharp,et al.  ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria , 1991, Molecular microbiology.

[98]  F. Kössler [Salt tolerance of respiration and light emission of Vibrio luminosus]. , 1970, Zeitschrift fur allgemeine Mikrobiologie.

[99]  E. B. Smith,et al.  General anaesthetics and bacterial luminescence I. The effect of diethyl ether on the in vivo light emission of Vibrio fischeri , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[100]  J. Davis,et al.  Incidence of Vibrio species associated with blue crabs (Callinectes sapidus) collected from Galveston Bay, Texas , 1982, Applied and environmental microbiology.

[101]  T. Baldwin,et al.  Polypeptide folding and dimerization in bacterial luciferase occur by a concerted mechanism in vivo. , 1987, Biochemistry.

[102]  K. Nealson,et al.  Catabolite repression of bacterial bioluminescence: functional implications. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[103]  M. Silverman,et al.  Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi , 1990, Journal of bacteriology.

[104]  S. Falkow,et al.  Coordinate regulation and sensory transduction in the control of bacterial virulence. , 1989, Science.

[105]  M. Simon,et al.  Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi. , 1982, Science.

[106]  T. Baldwin,et al.  Active center studies on bacterial luciferase: modification of the enzyme with 2,4-dinitrofluorobenzene. , 1981, Biochemistry.

[107]  J. W. Hastings,et al.  Bacterial luciferase. Binding of oxidized flavin mononucleotide. , 1975, The Journal of biological chemistry.

[108]  J. Lee Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide. , 1972, Biochemistry.

[109]  J. Mancini,et al.  Cloning and expression of the Photobacterium phosphoreum luminescence system demonstrates a unique lux gene organization. , 1988, The Journal of biological chemistry.

[110]  S. Tu,et al.  Elicitation of an oxidase activity in bacterial luciferase by site-directed mutation of a noncatalytic residue. , 1990, The Journal of biological chemistry.

[111]  P. Dunlap,et al.  Initiation and Control of the Bioluminescent Symbiosis between Photobacterium leiognathi and Leiognathid Fish , 1987, Annals of the New York Academy of Sciences.

[112]  E. Meighen Enzymes and Genes from the lux Operons of Bioluminescent Bacteria , 1988 .

[113]  E. Meighen,et al.  Expression of bioluminescence by Escherichia coli containing recombinant Vibrio harveyi DNA , 1987, Journal of bacteriology.

[114]  A. Ramesh,et al.  Luminous microflora associated with the fishesMugil cephalusandTachysurus arius , 1988 .

[115]  J. W. Hastings,et al.  Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[116]  E. Meighen,et al.  The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. , 1992, Biochemical and biophysical research communications.

[117]  B. Gibson,et al.  Electronic excitation transfer in the complex of lumazine protein with bacterial bioluminescence intermediates , 1991 .

[118]  G. Stewart,et al.  In vivo bioluminescent determination of apparent Km‘s for aldehyde in recombinant bacteria expressing luxA/B , 1989 .

[119]  Distribution and characterization of luminescent bacteria in a temperate estuary , 1984 .

[120]  J. W. Hastings,et al.  THE PURIFICATION PROPERTIES, AND CHEMILUMINESCENT QUANTUM YIELD OF BACTERIAL LUCIFERASE. , 1965, The Journal of biological chemistry.

[121]  M. Simon,et al.  Measuring gene expression with light. , 1985, Science.

[122]  F. Raushel,et al.  Proposed mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate. , 1989, Biochemical and Biophysical Research Communications - BBRC.

[123]  J. Findlay,et al.  The haemoglobin‐like protein (HMP) of Escherichia coli has ferrisiderophore reductase activity and its C‐terminal domain shares homology with ferredoxin NADP+ reductases , 1992, FEBS letters.

[124]  A. P. Escher,et al.  Construction Of A Novel Functional Bacterial Luciferase By Gene Fusion And Its Use As A Gene Marker In Low Light Video Image Analysis. , 1989, Optics & Photonics.

[125]  V. Danilov,et al.  Bioluminescence decay kinetics in the reaction of bacterial luciferase with different aldehydes. , 1990, Journal of bioluminescence and chemiluminescence.

[126]  K. Hasel,et al.  Polycistronic mRNAs code for polypeptides of the Vibrio harveyi luminescence system , 1985, Journal of bacteriology.

[127]  M. J. Cormier,et al.  THE IDENTIFICATION OF KCF: REQUIREMENT OF LONG-CHAIN ALDEHYDES FOR BACTERIAL EXTRACT LUMINESCENCE1 , 1953 .

[128]  S. Ulitzur The regulatory control of the bacterial luminescence system--a new view. , 1989, Journal of bioluminescence and chemiluminescence.

[129]  M. Simon,et al.  Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase. , 1986, The Journal of biological chemistry.

[130]  E. Greenberg,et al.  Planktonic Marine Luminous Bacteria: Species Distribution in the Water Column , 1980, Applied and Environmental Microbiology.

[131]  S. Tu,et al.  CHEMICAL MODIFICATION AND CHARACTERIZATION OF THE ALPHA CYSTEINE 106 AT THE Vibrio harveyi LUCIFERASE ACTIVE CENTER , 1989, Photochemistry and photobiology.

[132]  J. W. Hastings,et al.  Bacterial luciferase. Chemistry of the reactive sulfhydryl. , 1974, The Journal of biological chemistry.

[133]  R. Y. Morita,et al.  Incidence, Microscopy, and Etiology of Exoskeleton Lesions in the Tanner Crab, Chionoecetes tanneri , 1978 .

[134]  E. Meighen,et al.  Organization of the lux structural genes of Vibrio harveyi. Expression under the T7 bacteriophage promoter, mRNA analysis, and nucleotide sequence of the luxD gene. , 1988, The Journal of biological chemistry.

[135]  R. Colwell,et al.  Detection of luciferase gene sequence in nonluminescent Vibrio cholerae by colony hybridization and polymerase chain reaction , 1991, Applied and environmental microbiology.

[136]  A. Schauer Visualizing gene expression with luciferase fusions , 1988 .

[137]  A. Eberhard Inhibition and Activation of Bacterial Luciferase Synthesis , 1972, Journal of bacteriology.

[138]  Richard E. Young,et al.  Development of symbiotic bacterial bioluminescence in a nearshore cephalopod, Euprymna scolopes , 1989 .

[139]  S. Liebhaber,et al.  Destabilization of messenger RNA/complementary DNA duplexes by the elongating 80 S ribosome. , 1986, The Journal of biological chemistry.

[140]  E. Greenberg,et al.  Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system , 1985, Journal of bacteriology.

[141]  U. Mueller,et al.  Growth of the marine luminous bacterium Vibrio fischeri on 3′:5′-cyclic AMP: correlation with a periplasmic 3′:5′-cyclic AMP phosphodiesterase , 1992 .

[142]  K. Nealson,et al.  Growth and luminescence of the symbolic bacteria associated with the terrestrial nematode, Heterorphabditis bacteriophora , 1980 .

[143]  G. Sandberg,et al.  Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. , 1989, Gene.

[144]  E. Greenberg,et al.  Synthesis of N‐[3‐OXO‐(4,5‐3H2)‐hexanoyl] homoserine lactone: Biologically active tritium‐labelled vibrio fischeri autinducer , 1985 .

[145]  S. Bang,et al.  Evolutionary relationships in vibrio and Photobacterium: a basis for a natural classification. , 1983, Annual review of microbiology.

[146]  A. Gordon,et al.  Total energy flux in a marine bioluminescent bacterium , 1989 .

[147]  K. Nealson,et al.  Bioluminescence of the insect pathogen Xenorhabdus luminescens , 1989, Applied and environmental microbiology.

[148]  J. Pelletier,et al.  Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes. , 1989, The Journal of biological chemistry.

[149]  E. Delong,et al.  Isolation of the lux genes from Photobacterium leiognathi and expression in Escherichia coli. , 1987, Gene.

[150]  R. K. Sizemore,et al.  Distribution of the Luminous Bacterium Beneckea harveyi in a Semitropical Estuarine Environment , 1979, Applied and environmental microbiology.

[151]  E. Meighen,et al.  Conversion of aldehyde to acid in the bacterial bioluminescent reaction. , 1973, Biochemistry.

[152]  R. Cedergren,et al.  Evolution of a tRNA operon in gamma purple bacteria , 1989, Journal of bacteriology.

[153]  W. Brown,et al.  Nucleotide sequence of the LuxA and LuxB genes of the bioluminescent marine bacterium Vibrio fischeri. , 1988, Nucleic acids research.

[154]  A A Szalay,et al.  Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[155]  E. Ruby,et al.  Seasonal changes in the species composition of luminous bacteria in nearshore seawater , 1978 .

[156]  E. Greenberg,et al.  Evidence that GroEL, not sigma 32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli , 1992, Journal of bacteriology.

[157]  J. Mancini,et al.  Organization of the lux genes of photobacterium phosphoreum , 1989 .

[158]  E. Meighen,et al.  A lux-specific myristoyl transferase in luminescent bacteria related to eukaryotic serine esterases. , 1991, The Journal of biological chemistry.

[159]  J. W. Hastings,et al.  Binding site determination from kinetic data. Reduced flavin mononucleotide binding to bacterial luciferase. , 1971, The Journal of biological chemistry.

[160]  A A Szalay,et al.  Bioluminescence in soybean root nodules: Demonstration of a general approach to assay gene expression in vivo by using bacterial luciferase. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[161]  E. Jablonski,et al.  Purification and properties of the NADH and NADPH specific FMN oxidoreductases from Beneckea harveyi. , 1977, Biochemistry.

[162]  P. Dunlap,et al.  Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-luxR protein regulatory circuit , 1988, Journal of bacteriology.

[163]  J. W. Hastings,et al.  The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. , 1975, Journal of Biological Chemistry.

[164]  E S Kempner,et al.  Aspects of Light Production by Photobacterium fischeri , 1968, Journal of bacteriology.

[165]  E. Meighen,et al.  Vibrio harveyi aldehyde dehydrogenase. Partial reversal of aldehyde oxidation and its possible role in the reduction of fatty acids for the bioluminescence reaction. , 1984, The Journal of biological chemistry.

[166]  Luciferase‐dependent growth of cytochrome‐deficient Vibrio harveyi , 1986 .

[167]  D. Riendeau,et al.  Fatty acid acylation of proteins in bioluminescent bacteria , 1983 .

[168]  M. Silverman,et al.  Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. , 1987, Nucleic acids research.

[169]  R. Szittner,et al.  Multiple repetitive elements and organization of the lux operons of luminescent terrestrial bacteria , 1992, Journal of bacteriology.

[170]  M. Yarus,et al.  A simple and sensitive in vivo luciferase assay for tRNA-mediated nonsense suppression , 1990, Journal of bacteriology.

[171]  J. Roberts,et al.  Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells. , 1989, Gene.

[172]  C. Koncz,et al.  High-frequency T-DNA-mediated gene tagging in plants. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[173]  J. Makemson Luciferase-dependent oxygen consumption by bioluminescent vibrios , 1986, Journal of bacteriology.

[174]  L J Blum,et al.  Fibre-optic biosensor based on luminescence and immobilized enzymes: microdetermination of sorbitol, ethanol and oxaloacetate. , 1990, Journal of bioluminescence and chemiluminescence.

[175]  J. W. Hastings,et al.  Functional differences of the nonidentical subunits of bacterial luciferase. Properties of hybrids of native and chemically modified bacterial luciferase. , 1971, Biochemistry.

[176]  J. W. Hastings,et al.  Bacterial luciferase requires one reduced flavin for light emission. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[177]  Hastings Jw,et al.  Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. , 1963 .

[178]  S. Tu [11] Bacterial luciferase 4a-hydroperoxyflavin intermediates: Stabilization, isolation, and properties , 1986 .

[179]  T. Baldwin,et al.  Positive autoregulation of the Vibrio fischeri luxR gene. LuxR and autoinducer activate cAMP-catabolite gene activator protein complex-independent and -dependent luxR transcription. , 1992, The Journal of biological chemistry.

[180]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[181]  B. Matthews,et al.  Crystals of luciferase from Vibrio harveyi. A preliminary characterization. , 1985, The Journal of biological chemistry.

[182]  K. Nealson,et al.  Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System , 1970, Journal of bacteriology.

[183]  T. Baldwin,et al.  Identification of a distantly located regulatory element in the luxD gene required for negative autoregulation of the Vibrio fischeri luxR gene. , 1992, The Journal of biological chemistry.

[184]  G. Salmond,et al.  A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. , 1992, Gene.

[185]  C. Kado,et al.  Characterization of the virE locus of Agrobacterium tumefaciens plasmid pTiC58 , 1987, Journal of bacteriology.

[186]  S. Ulitzur,et al.  An adenosine 3',5'-monophosphate-requiring mutant of the luminous bacteria Beneckea harveyi. , 1975, Biochimica et biophysica acta.

[187]  C. Kado,et al.  A plant-inducible gene of Xanthomonas campestris pv. campestris encodes an exocellular component required for growth in the host and hypersensitivity on nonhosts , 1990, Journal of bacteriology.

[188]  E. Meighen,et al.  Different sites for fatty acid activation and acyl transfer by the synthetase subunit of fatty acid reductase: acylation of a cysteinyl residue , 1988 .

[189]  J. J. Coffey Inducible Synthesis of Bacterial Luciferase: Specificity and Kinetics of Induction , 1967, Journal of bacteriology.

[190]  D. O'Kane,et al.  Borrowed proteins in bacterial bioluminescence. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[191]  E. Meighen,et al.  Transcriptional regulation of lux genes transferred into Vibrio harveyi , 1990, Journal of bacteriology.

[192]  I. Matheson,et al.  An efficient bacterial bioluminescence with reduced lumichrome. , 1981, Biochemical and biophysical research communications.

[193]  E. Meighen,et al.  Delineation of the transcriptional boundaries of the lux operon of Vibrio harveyi demonstrates the presence of two new lux genes. , 1990, The Journal of biological chemistry.

[194]  S. Wing,et al.  Purification and properties of a NAD(P)H:flavin oxidoreductase from the luminous bacterium, Beneckea harveyi. , 1977, The Journal of biological chemistry.

[195]  K. Nealson,et al.  Purification and properties of bacterial luciferases. , 1972, The Journal of biological chemistry.

[196]  J. W. Hastings,et al.  Growth and luminescence of the bacterium Xenorhabdus luminescens from a human wound , 1989, Applied and environmental microbiology.

[197]  K. Nealson,et al.  Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification , 1991, Applied and environmental microbiology.

[198]  J. W. Hastings,et al.  Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[199]  K. Nealson,et al.  Bacterial bioluminescence: its control and ecological significance , 1979, Microbiological reviews.

[200]  A. Bacher,et al.  Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli , 1992, Journal of bacteriology.

[201]  H. Jörnvall,et al.  Characterization of the flavin reductase gene (fre) of Escherichia coli and construction of a plasmid for overproduction of the enzyme , 1991, Journal of bacteriology.

[202]  T. Baldwin,et al.  Random and site-directed mutagenesis of bacterial luciferase: investigation of the aldehyde binding site. , 1989, Biochemistry.

[203]  U. Winkler,et al.  Bioluminescence of outer membrane defective mutants of Photobacterium phosphoreum , 1986 .

[204]  Gerhard,et al.  THE INFLUENCE OF ALDEHYDE CHAIN LENGTH UPON THE RELATIVE QUANTUM YIELD OF THE BIOLUMINESCENT REACTION OF ACHROMOBACTER FISCHERI. , 1963, The Journal of biological chemistry.

[205]  T. Holzman,et al.  Reversible inhibition of the bacterial luciferase catalyzed bioluminescence reaction by aldehyde substrate: kinetic mechanism and ligand effects , 1983 .

[206]  R. Gast,et al.  Isolation of the in vivo emitter in bacterial bioluminescence. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[207]  Mechanisms of iron regulation of luminescence in Vibrio fischeri , 1985, Journal of bacteriology.

[208]  T. Baldwin,et al.  Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol. , 1989, Journal of bioluminescence and chemiluminescence.

[209]  M. Hood,et al.  Vibrios of some deep‐water invertebrates , 1986 .

[210]  Dennis J. O'Kane,et al.  Bacterial luciferase: A carbon-13, nitrogen-15 and phophorus-31 nuclear magnetic resonance investigation. , 1986 .

[211]  P. Dunlap PHYSIOLOGICAL AND MORPHOLOGICAL STATE OF THE SYMBIOTIC BACTERIA FROM LIGHT ORGANS OF PONYFISH. , 1984, The Biological bulletin.

[212]  M. Silverman,et al.  Identification of a locus controlling expression of luminescence genes in Vibrio harveyi , 1989, Journal of bacteriology.

[213]  P. Dunlap ORGANIZATION and REGULATION OF BACTERIAL LUMINESCENCE GENES , 1991 .

[214]  S. Tu,et al.  Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit. , 1991, Biochemistry.

[215]  E. Meighen,et al.  Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism. , 1980, The Journal of biological chemistry.

[216]  J. W. Hastings,et al.  Oxygen Affinities of the Bioluminescence Systems of Various Species of Luminous Bacteria , 1985 .

[217]  E. Meighen,et al.  In vivo and in vitro acylation of polypeptides in Vibrio harveyi: identification of proteins involved in aldehyde production for bioluminescence , 1984, Journal of bacteriology.

[218]  A. Bognar,et al.  Differential regulation of enzyme activities involved in aldehyde metabolism in the luminescent bacterium Vibrio harveyi , 1988, Journal of bacteriology.

[219]  R. Colwell,et al.  Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella , 1985 .

[220]  L. F. Adams,et al.  The nucleotide sequence of the luxE gene of Vibrio harveyi and a comparison of the amino acid sequences of the acyl-protein synthetases from V. harveyi and V. fischeri. , 1989, Biochemical and biophysical research communications.

[221]  M. Silverman,et al.  [8] Techniques for cloning and analyzing bioluminescence genes from marine bacteria , 1986 .

[222]  K. Nealson,et al.  The effect of iron on the growth and luminescence of the symbiotic bacterium Vibrio fischeri , 1985 .

[223]  D. Powers,et al.  Covalent structure of subunits of bacterial luciferase: NH2-terminal sequence demonstrates subunit homology. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[224]  E. Meighen,et al.  Molecular biology of bacterial bioluminescence. , 1991, Microbiological reviews.

[225]  J. W. Hastings,et al.  Biochemistry and physiology of bioluminescent bacteria. , 1985, Advances in microbial physiology.

[226]  A. Bacher,et al.  13C and 15N NMR studies on the interaction between 6,7-dimethyl-8-ribityllumazine and lumazine protein. , 1990, Biochemistry.

[227]  J. W. Hastings,et al.  A postulated mechanism for the bioluminescent oxidation of reduced flavin mononucleotide. , 1972, Biochemical and biophysical research communications.

[228]  T. Holzman,et al.  Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli. , 1984, Biochemistry.

[229]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[230]  E. Ruby,et al.  Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes , 1990, Journal of bacteriology.

[231]  B. Haribabu,et al.  Identification of a protein kinase multigene family of Dictyostelium discoideum: molecular cloning and expression of a cDNA encoding a developmentally regulated protein kinase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[232]  Ivan R. Nabi,et al.  ATP turnover by the fatty acid reductase complex of Photobacterium phosphoreum , 1985 .

[233]  C. Wolk,et al.  Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. , 1990, The EMBO journal.

[234]  T. Baldwin,et al.  Effects of 3' end deletions from the Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: generation of temperature-sensitive polypeptide folding mutants. , 1988, Biochemistry.

[235]  P. Dunlap,et al.  Identification of Luminous Bacteria Isolated from the Light Organ of the Squid, Doryteuthis kensaki , 1986 .

[236]  A A Szalay,et al.  Expression and assembly of functional bacterial luciferase in plants. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[237]  M. Haygood,et al.  Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi. , 1986, Gene.

[238]  S. Tu Isolation and properties of bacterial luciferase-oxygenated flavin intermediate complexed with long-chain alcohols. , 1979, Biochemistry.

[239]  Mechanism for iron control of the Vibrio fischeri luminescence system: involvement of cyclic AMP and cyclic AMP receptor protein and modulation of DNA level. , 1992, Journal of bioluminescence and chemiluminescence.

[240]  D. O'Kane,et al.  Bacterial luciferase alpha beta fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. , 1989, Proceedings of the National Academy of Sciences of the United States of America.