Convergence of the thresholding scheme for multi-phase mean-curvature flow

[1]  Y. Tonegawa,et al.  On the mean curvature flow of grain boundaries , 2015, 1511.02572.

[2]  Tim Laux,et al.  Convergence of thresholding schemes incorporating bulk effects , 2016, 1601.02467.

[3]  Felix Otto,et al.  Threshold Dynamics for Networks with Arbitrary Surface Tensions , 2015 .

[4]  Luca Mugnai,et al.  Global solutions to the volume-preserving mean-curvature flow , 2015, 1502.07232.

[5]  M. Novaga,et al.  Motion by Curvature of Planar Networks , 2003, math/0302164.

[6]  J. Sethian,et al.  The Voronoi Implicit Interface Method for computing multiphase physics , 2011, Proceedings of the National Academy of Sciences.

[7]  Peter Smereka,et al.  Large-scale simulations and parameter study for a simple recrystallization model , 2011 .

[8]  Peter Smereka,et al.  Large-scale simulation of normal grain growth via diffusion-generated motion , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  A. Chambolle,et al.  Consistency result for a non monotone scheme for anisotropic mean curvature flow , 2010, 1005.4794.

[10]  Selim Esedoglu,et al.  Diffusion generated motion for grain growth in two and three dimensions , 2009, J. Comput. Phys..

[11]  J. Hell,et al.  Evolution of convex lens-shaped networks under the curve shortening flow , 2007, 0711.1108.

[12]  D. Pallara,et al.  Short-time heat flow and functions of bounded variation in \mathbf{R}^N , 2007 .

[13]  Antonin Chambolle,et al.  Convergence of an Algorithm for the Anisotropic and Crystalline Mean Curvature Flow , 2006, SIAM J. Math. Anal..

[14]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[15]  D. Pallara,et al.  Short-time heat flow and functions of bounded variation in RN , 2005 .

[16]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[17]  D. Mumford,et al.  Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms , 2004, Documenta Mathematica.

[18]  A. Chambolle An algorithm for Mean Curvature Motion , 2004 .

[19]  Steven J. Ruuth,et al.  A Simple Scheme for Volume-Preserving Motion by Mean Curvature , 2003, J. Sci. Comput..

[20]  P. Souganidis,et al.  Threshold dynamics type approximation schemes for propagating fronts , 1999 .

[21]  Steven J. Ruuth Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .

[22]  Giovanni Alberti,et al.  A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies , 1998, European Journal of Applied Mathematics.

[23]  Giovanni Alberti,et al.  A nonlocal anisotropic model for phase transitions , 1998 .

[24]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[25]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[26]  S. Luckhaus,et al.  Implicit time discretization for the mean curvature flow equation , 1995 .

[27]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[28]  L. Bronsard,et al.  On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation , 1993 .

[29]  F. Almgren,et al.  Curvature-driven flows: a variational approach , 1993 .

[30]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[31]  Tom Ilmanen,et al.  Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 1993 .

[32]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[33]  Stephan Luckhaus,et al.  The Gibbs-Thompson relation within the gradient theory of phase transitions , 1989 .

[34]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[35]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[36]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[37]  Yu. G. Reshetnyak Weak convergence of completely additive vector functions on a set , 1968 .

[38]  Yu. G. Reshetnyak General theorems on semicontinuity and on convergence with a functional , 1967 .

[39]  W. Read,et al.  Dislocation Models of Crystal Grain Boundaries , 1950 .