Rotational support of giant clumps in high-z disc galaxies

We address the internal support against total free-fall col lapse of the giant clumps that form by violent gravitational instability in high-z disc galaxies. Guidance is provided by an analytic model, where the proto-clumps are cut from a rotating disc and collapse to equilibrium while preserving angular momentum. This model predicts prograde clump rotation, which dominates the support if the clump has contracted to a surface-density contrast > ∼10. This is confirmed in hydro-AMR zoom-in simulations of galaxies in a cosmological context. In most high-z clumps, the centrifugal force dominates the support, R ≡ V 2 rot/V 2 circ > 0.5, where Vrot is the rotation velocity and the circular velocity Vcirc measures the potential well. The clump spin indeed tends to be in the sense of the global disc angular momentum, but substantial tilts are frequent, reflecting the highly wa rped nature of the high-z discs. Most clumps are in Jeans equilibrium, with the rest of the support provided by turbulence, partly driven by the gravitational instability itself. The general agreement between model and simulations indicates that angular-momentum loss or gain in most clumps is limited to a factor of two. Simulations of isolated gas-rich discs that resolve the clump substructure reveal that the cosmological simulations may overestimate R by ∼30%, but the dominance of rotational support at high z is not a resolution artifact. In turn, isolated gas-poor dis c simulations produce at z = 0 smaller gaseous non-rotating transient clouds, indicatin g that the difference in rotational support is associated with the fra ction of cold baryons in the disc. In our current cosmological simulations, the clump rotation velocity is typically more than twice the disc dispersion, Vrot ∼100kms −1 , but when beam smearing of >0.1 arcsec is imposed, the rotation signal is reduced to a small gradient of 6 30kms −1 kpc −1 across the clump. The velocity dispersion in the simulated clumps is comparable to the disc dispersion so it is expected to leave only a marginal signal for any beam smearing. Retrograde minor-merging galaxies could lead to massive clumps that do not show rotation even when marginally resolved. Testable predictions of the scenario as simulate d are that the mean stellar age of the clumps, and the stellar fraction, are declining linearl y with distance from the disc center.

[1]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[2]  Michal Maciejewski,et al.  Haloes gone MAD: The Halo-Finder Comparison Project , 2011, 1104.0949.

[3]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. II. PROPERTIES OF KILOPARSEC-SCALE CLUMPS IN REST-FRAME OPTICAL EMISSION OF z ∼ 2 STAR-FORMING GALAXIES , 2011, 1104.0248.

[4]  J. Prochaska,et al.  Absorption-line systems in simulated galaxies fed by cold streams , 2011, 1103.2130.

[5]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[6]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[7]  I. Cambridge,et al.  Why are most molecular clouds not gravitationally bound , 2011, 1101.3414.

[8]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. I. DETAILED REST-FRAME OPTICAL MORPHOLOGIES ON KILOPARSEC SCALE OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1011.1507.

[9]  G. Zamorani,et al.  THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS , 2010, 1011.5360.

[10]  Bonn,et al.  The properties of the interstellar medium within a star-forming galaxy at z= 2.3 , 2010, Monthly Notices of the Royal Astronomical Society.

[11]  R. Teyssier,et al.  ISM properties in hydrodynamic galaxy simulations: turbulence cascades, cloud formation, role of gravity and feedback , 2010, 1007.2566.

[12]  R. Teyssier,et al.  THE DRIVING MECHANISM OF STARBURSTS IN GALAXY MERGERS , 2010, 1006.4757.

[13]  R. Teyssier,et al.  Star formation in galaxy mergers: ISM turbulence, dense gas excess, and scaling relations for disks and starbusts , 2010, Proceedings of the International Astronomical Union.

[14]  M. Krumholz,et al.  ON THE DYNAMICS AND EVOLUTION OF GRAVITATIONAL INSTABILITY-DOMINATED DISKS , 2010, 1003.4513.

[15]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[16]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[17]  A. Dekel,et al.  Survival of star-forming giant clumps in high-redshift galaxies , 2010, 1001.0765.

[18]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[19]  G. Cresci,et al.  HIGH-REDSHIFT STAR-FORMING GALAXIES: ANGULAR MOMENTUM AND BARYON FRACTION, TURBULENT PRESSURE EFFECTS, AND THE ORIGIN OF TURBULENCE , 2009, 0907.4777.

[20]  A. Dekel,et al.  High-redshift clumpy discs and bulges in cosmological simulations , 2009, 0907.3271.

[21]  R. Teyssier,et al.  Gravity-driven Lyα blobs from cold streams into galaxies , 2009, 0911.5566.

[22]  Y. Birnboim MAGNETICALLY REGULATED GAS ACCRETION IN HIGH-REDSHIFT GALACTIC DISKS , 2009, 0908.1786.

[23]  E. Quataert,et al.  THE DISRUPTION OF GIANT MOLECULAR CLOUDS BY RADIATION PRESSURE & THE EFFICIENCY OF STAR FORMATION IN GALAXIES , 2009, 0906.5358.

[24]  B. Elmegreen,et al.  CLUMPY GALAXIES IN GOODS AND GEMS: MASSIVE ANALOGS OF LOCAL DWARF IRREGULARS , 2009, 0906.2660.

[25]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[26]  P. Buschkamp,et al.  THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY–FISHER RELATION , 2009, 0902.4701.

[27]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[28]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[29]  J. Papaloizou,et al.  The excitation of spiral density waves through turbulent fluctuations in accretion discs – II. Numerical simulations with MRI-driven turbulence , 2008, 0812.2471.

[30]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[31]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[32]  UCOLick,et al.  UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES AT z = 1.4 , 2008, 0804.4686.

[33]  A. Klypin,et al.  THE ROLE OF STELLAR FEEDBACK IN THE FORMATION OF GALAXIES , 2007, 0712.3285.

[34]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[35]  Laboratoire AIM,et al.  Bulge Formation by the Coalescence of Giant Clumps in Primordial Disk Galaxies , 2008, 0903.1937.

[36]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[37]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[38]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[39]  A. Cimatti,et al.  Kinemetry of SINS High-Redshift Star-Forming Galaxies: Distinguishing Rotating Disks from Major Mergers , 2008, 0802.0879.

[40]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[41]  R. Teyssier,et al.  On the onset of galactic winds in quiescent star forming galaxies , 2007, 0707.3376.

[42]  S. Ravindranath,et al.  Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at z = 1.5 , 2007, 0711.4995.

[43]  D. Calzetti,et al.  Star Formation in NGC 5194 (M51a). II. The Spatially Resolved Star Formation Law , 2007, 0708.0922.

[44]  B. G. Elmegreen,et al.  Rapid Formation of Exponential Disks and Bulges at High Redshift from the Dynamical Evolution of Clump-Cluster and Chain Galaxies , 2007, 0708.0306.

[45]  James E. Larkin,et al.  Integral Field Spectroscopy of High-Redshift Star-forming Galaxies with Laser-guided Adaptive Optics: Evidence for Dispersion-dominated Kinematics , 2007, 0707.3634.

[46]  S. Ravindranath,et al.  Resolved Galaxies in the Hubble Ultra Deep Field: Star Formation in Disks at High Redshift , 2007, astro-ph/0701121.

[47]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[48]  B. Elmegreen,et al.  Observations of Thick Disks in the Hubble Space Telescope Ultra Deep Field , 2006, astro-ph/0607540.

[49]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[50]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[51]  Bruce G. Elmegreen,et al.  Galaxy Morphologies in the Hubble Ultra Deep Field: Dominance of Linear Structures at the Detection Limit , 2005 .

[52]  B. Elmegreen,et al.  Stellar Populations in 10 Clump-Cluster Galaxies of the Hubble Ultra Deep Field , 2005, astro-ph/0504032.

[53]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[54]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[55]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 ≲ z ≲ 2.5 , 2004, astro-ph/0409041.

[56]  O. Gerhard,et al.  Subgalactic Clumps at High Redshift: A Fragmentation Origin? , 2004, astro-ph/0406135.

[57]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[58]  B. Elmegreen,et al.  Chain Galaxies in the Tadpole Advanced Camera for Surveys Field , 2004, astro-ph/0402477.

[59]  Chain Galaxies in the Tadpole ACS Field , 2004, astro-ph/0401364.

[60]  Gas physics, disk fragmentation, and bulge formation in young galaxies , 2003, astro-ph/0312139.

[61]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[62]  A. Kravtsov On the Origin of the Global Schmidt Law of Star Formation , 2003, astro-ph/0303240.

[63]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[64]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[65]  R. Teyssier c ○ ESO 2002 Astronomy Astrophysics , 2002 .

[66]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[67]  M. Noguchi Early Evolution of Disk Galaxies: Formation of Bulges in Clumpy Young Galactic Disks , 1998, astro-ph/9806355.

[68]  J. P. Phillips Rotation in molecular clouds , 1999 .

[69]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[70]  J. Alves,et al.  Dust Extinction and Molecular Cloud Structure: L977 , 1998, astro-ph/9805141.

[71]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[72]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[73]  S. Bergh Some integrated properties of galactic globular clusters , 1996, astro-ph/9610165.

[74]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[75]  L. Cowie,et al.  Faintest galaxy morphologies from hst wfpc2 imaging of the hawaii survey fields , 1995, astro-ph/9507055.

[76]  S. Basu,et al.  Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. I. Axisymmetric solutions , 1994 .

[77]  R. Rand,et al.  M51: molecular spiral arms, giant molecular associations, and superclouds , 1990 .

[78]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[79]  L. Blitz,et al.  THE ORIGIN AND LIFETIME OF GIANT MOLECULAR CLOUD COMPLEXES , 1980 .

[80]  T. Mouschovias,et al.  The angular momentum problem and magnetic braking - an exact time-dependent solution , 1979 .

[81]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .