Discharge current modes of high power impulse magnetron sputtering

Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

[1]  Z. Remeš,et al.  On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method , 2015 .

[2]  A. Anders,et al.  On the road to self-sputtering in high power impulse magnetron sputtering: particle balance and discharge characteristics , 2014 .

[3]  C. Vițelaru,et al.  Argon metastables in HiPIMS: time-resolved tunable diode-laser diagnostics , 2012 .

[4]  U. Helmersson,et al.  High power impulse magnetron sputtering discharge , 2012 .

[5]  K. Sarakinos,et al.  A strategy for increased carbon ionization in magnetron sputtering discharges , 2012 .

[6]  L. Martinu,et al.  Hysteresis-free deposition of niobium oxide films by HiPIMS using different pulse management strategies , 2012 .

[7]  L. Martinu,et al.  Steady state discharge optimization in high-power impulse magnetron sputtering through the control of the magnetic field , 2012 .

[8]  Shicai Yang,et al.  A study of TiMoN nano-multilayer coatings deposited by CFUBMSIP using DC and HIPIMS power , 2012 .

[9]  C. Pulgarin,et al.  High power impulse magnetron sputtering (HIPIMS) and traditional pulsed sputtering (DCMSP) Ag-surfaces leading to E. coli inactivation , 2012 .

[10]  S. Ólafsson,et al.  Current-voltage-time characteristics of the reactive Ar/N2 high power impulse magnetron sputtering discharge , 2011 .

[11]  V. Bellido-González,et al.  Investigation of reactive high power impulse magnetron sputtering processes using various target material–reactive gas combinations , 2011 .

[12]  D. Mckenzie,et al.  Controlled glow to arc transition in sputtering for high rate deposition of carbon films , 2011 .

[13]  K. Bobzin,et al.  DC-MSIP/HPPMS (Cr,Al,V)N and (Cr,Al,W)N thin films for high-temperature friction reduction , 2011 .

[14]  J. Vlček,et al.  A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering , 2010 .

[15]  R. Braun,et al.  Novel CrAlYN/CrN nanoscale multilayer PVD coatings produced by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique for environmental protection of γ-TiAl alloys , 2010 .

[16]  S. Konstantinidis,et al.  High power pulsed magnetron sputtering: A review on scientific and engineering state of the art , 2010 .

[17]  L. Martinu,et al.  Dynamics of reactive high-power impulse magnetron sputtering discharge studied by time- and space-resolved optical emission spectroscopy and fast imaging , 2010 .

[18]  P. Kelly,et al.  Cathode Current Density Distributions in High Power Impulse and Direct Current Magnetron Sputtering Modes , 2009 .

[19]  E. Oks,et al.  Evolution of the plasma composition of a high power impulse magnetron sputtering system studied with a time-of-flight spectrometer , 2009 .

[20]  G. Yushkov Physical limits for high ion charge states in pulsed discharges in vacuum - eScholarship , 2009 .

[21]  J. Andersson,et al.  Self-sputtering far above the runaway threshold: an extraordinary metal-ion generator. , 2009, Physical review letters.

[22]  J. Andersson,et al.  Observation of Ti4+ ions in a high power impulse magnetron sputtering plasma , 2008 .

[23]  A. Anders Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions , 2008 .

[24]  J. Andersson,et al.  High power impulse magnetron sputtering : Current-voltage-time characteristics indicate the onset of sustained self-sputtering , 2007 .

[25]  Arutiun P. Ehiasarian,et al.  Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion , 2007 .

[26]  L. Poucques,et al.  Electrical and optical experimental study of ionized physical vapour deposition (IPVD) processes , 2006 .

[27]  I. Petrov,et al.  High power pulsed magnetron sputtered CrNX films , 2003 .

[28]  F. Aumayr,et al.  Slow-ion induced electron emission from clean metal surfaces: “Subthreshold kinetic emission” and “potential excitation of plasmons” , 2001 .

[29]  J. Schneider,et al.  A novel pulsed magnetron sputter technique utilizing very high target power densities , 1999 .

[30]  M. Gundersen,et al.  Self-sustained self-sputtering: a possible mechanism for the superdense glow phase of a pseudospark , 1995 .