Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly

Jeremy F. P. Ullmann | Sebastian A. Leidel | E. Roeder | P. Gaffney | S. Leidel | B. Menten | T. Shiihara | B. Behnam | N. Boddaert | J. Ullmann | E. Lemyre | D. Magen | Shrikant Mane | R. Lifton | M. Bouchard | P. Revy | D. Chitayat | G. Mollet | O. Gribouval | C. Antignac | H. van Tilbeurgh | H. Tilbeurgh | P. Gipson | C. Kiraly-Borri | K. Wierenga | P. Rump | F. Hildebrandt | M. Wolf | S. Ashraf | D. Viskochil | R. Schnur | B. Collinet | M. Zenker | R. Topaloğlu | Tobias Hermle | P. Dedon | Kazuyuki Nakamura | A. Poduri | I. Guerrera | T. Basta | A. Masri | C. Prasad | N. de Rocker | B. Callewaert | M. Sinha | Shuan-Pei Lin | N. Soliman | S. Wong | S. Vergult | H. Gee | Oraly Sanchez-Ferras | J. Kari | M. Cho | A. Begtrup | Ankana Daga | Jia Rao | D. Sweetser | D. Liger | Jillian K. Warejko | Weizhen Tan | D. Schapiro | Jennifer A. Lawson | S. Lovric | Tilman Jobst-Schwan | C. E. Sadowski | F. Ozaltin | D. Braun | D. Schanze | U. Vester | Chyong-hsin Hsu | Jui-Hsing Chang | M. Praet | K. Scharmann | Gessica Truglio | M. Daugeron | J. Tsai | V. Matejas | P. Kannu | Jessica L. Waxler | O. Boyer | N. Vatanavicharn | Chao-Huei Chen | M. Moghtaderi | Wen-Hui Tsai | M. Bruce | Y. Ke | Gaëlle Martin | Charlotte A. Hoogstraten | J. Schmidt | M. Furlano | Anne-Claire Boschat | S. Sanquer | Merlin Airik | G. Ch'ng | W. Lai | W. Choi | K. Soulami | A. Prytuła | E. Widmeier | Sandra D. Kienast | R.O. Littlejohn | Jennifer F Hu | S. Shril | N. D. Rocker | B. Beeson | Werner L. Pabst | Charlotte A Hoogstraten | Won-Il Choi | Neveen A. Soliman | Jennifer F. Hu | Elizabeth R. Roeder | Manish D. Sinha | Amber Begtrup | C. Antignac | M. T. Wolf | Verena Matejas | Babak Behnam | Shuan-pei Lin | O. Boyer | Patrick Revy | Jeremy F.P. Ullmann | Nathalie Boddaert | G. Martin | M. Furlano | I. C. Guerrera | Jennifer Hu | Sylvia Sanquer | Jui Hsing Chang | Chao Huei Chen | Patrick E. Gipson | Y. Ke | Wai Ming Lai | Wen Hui Tsai | David Viskochil | Sik Nin Wong | S. A. Leidel | F. Ozaltın

[1]  V. Crécy-Lagard,et al.  tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy , 2017, European Journal of Human Genetics.

[2]  A. Gingras,et al.  Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7 , 2016, Nucleic Acids Research.

[3]  M. Helm,et al.  Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry. , 2016, Methods.

[4]  I. Guerrera,et al.  Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP) , 2016, Proteomics.

[5]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[6]  V. de Crécy-Lagard,et al.  Global translational impacts of the loss of the tRNA modification t6A in yeast , 2015, Microbial cell.

[7]  L. Hood,et al.  A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51 , 2015, Nature Communications.

[8]  Sebastian A. Leidel,et al.  A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. , 2015, Developmental cell.

[9]  D. Prayer,et al.  WDR73 Mutations Cause Infantile Neurodegeneration and Variable Glomerular Kidney Disease , 2015, Human mutation.

[10]  Sebastian A. Leidel,et al.  Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity , 2015, Cell.

[11]  M. Hurles,et al.  Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73 , 2015, Brain : a journal of neurology.

[12]  Margaret Y. Nettleton,et al.  KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. , 2015, The Journal of clinical investigation.

[13]  S. Engelmann,et al.  A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. , 2015, Journal of the American Society of Nephrology : JASN.

[14]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[15]  M. Graille,et al.  Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex , 2015, Nucleic acids research.

[16]  N. Pollet,et al.  Comparison of T7E1 and Surveyor Mismatch Cleavage Assays to Detect Mutations Triggered by Engineered Nucleases , 2015, G3: Genes, Genomes, Genetics.

[17]  N. Boddaert,et al.  Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. , 2014, American Journal of Human Genetics.

[18]  B. van Steensel,et al.  Easy quantitative assessment of genome editing by sequence trace decomposition , 2014, Nucleic acids research.

[19]  Tessa G. Montague,et al.  Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs , 2014, PloS one.

[20]  George M. Church,et al.  CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing , 2014, Nucleic Acids Res..

[21]  D. G. MacArthur,et al.  Guidelines for investigating causality of sequence variants in human disease , 2014, Nature.

[22]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[23]  A. Paterson,et al.  ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. , 2013, The Journal of clinical investigation.

[24]  S. Levy,et al.  ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. , 2013, The Journal of clinical investigation.

[25]  F. Hildebrandt,et al.  Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy , 2013, Human Genetics.

[26]  V. Plagnol,et al.  Constitutional Mutations in RTEL1 Cause Severe Dyskeratosis Congenita , 2013, American journal of human genetics.

[27]  H. Omran,et al.  High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing , 2012, Journal of Medical Genetics.

[28]  H. Stunnenberg,et al.  The Human EKC/KEOPS Complex Is Recruited to Cullin2 Ubiquitin Ligases by the Human Tumour Antigen PRAME , 2012, PloS one.

[29]  L. Foster,et al.  A high-throughput approach for measuring temporal changes in the interactome , 2012, Nature Methods.

[30]  Corinne Stoetzel,et al.  Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling , 2012, Cell.

[31]  Dorit Hanein,et al.  The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration , 2012, The Journal of cell biology.

[32]  T. Lenstra,et al.  Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs , 2011, Nucleic acids research.

[33]  E. Koonin,et al.  The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A , 2011, The EMBO journal.

[34]  Tamer Kahveci,et al.  A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification , 2011, The EMBO journal.

[35]  David P. Davis,et al.  A chemosensitization screen identifies TP53RK, a kinase that restrains apoptosis after mitotic stress. , 2010, Cancer research.

[36]  A. Fischer,et al.  Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal–Hreidarsson syndrome , 2010, Proceedings of the National Academy of Sciences.

[37]  P. Forterre,et al.  Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance , 2009, Nucleic acids research.

[38]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[39]  Peter Nürnberg,et al.  HomozygosityMapper—an interactive approach to homozygosity mapping , 2009, Nucleic Acids Res..

[40]  F. Hildebrandt,et al.  Specific podocin mutations determine age of onset of nephrotic syndrome all the way into adult life. , 2009, Kidney international.

[41]  P. Forterre,et al.  The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya. , 2009, Biochemical Society transactions.

[42]  Peter Nürnberg,et al.  A Systematic Approach to Mapping Recessive Disease Genes in Individuals from Outbred Populations , 2009, PLoS genetics.

[43]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[44]  D. Durocher,et al.  Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. , 2008, Molecular cell.

[45]  P. Forterre,et al.  Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex , 2008, The EMBO journal.

[46]  P. Jeggo,et al.  The role of the DNA damage response pathways in brain development and microcephaly: insight from human disorders. , 2008, DNA repair.

[47]  William C Earnshaw,et al.  Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling , 2008, Nature Genetics.

[48]  N. Trede,et al.  Method for isolation of PCR-ready genomic DNA from zebrafish tissues. , 2007, BioTechniques.

[49]  K. Asanuma,et al.  Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. , 2007, Trends in cell biology.

[50]  K. Hofmann,et al.  Yeast homolog of a cancer‐testis antigen defines a new transcription complex , 2006, The EMBO journal.

[51]  David Lydall,et al.  A Genome-Wide Screen Identifies the Evolutionarily Conserved KEOPS Complex as a Telomere Regulator , 2006, Cell.

[52]  Randal J. Kaufman,et al.  Divergent Roles of IRE1α and PERK in the Unfolded Protein Response , 2006 .

[53]  L. Holzman,et al.  Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. , 2005, Journal of the American Society of Nephrology : JASN.

[54]  A. Bakkaloğlu,et al.  Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. , 2004, Journal of the American Society of Nephrology : JASN.

[55]  Judith A. Goodship,et al.  A splicing mutation affecting expression of ataxia–telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome , 2003, Nature Genetics.

[56]  P. Agris,et al.  Accurate Translation of the Genetic Code Depends on tRNA Modified Nucleosides* , 2002, The Journal of Biological Chemistry.

[57]  M. O'hare,et al.  A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. , 2002, Journal of the American Society of Nephrology : JASN.

[58]  R. Kaufman,et al.  Divergent roles of IRE1alpha and PERK in the unfolded protein response. , 2006, Current molecular medicine.