Lie transformations, nonlinear evolution equations, and Painlevé forms

We present the results of a systematic investigation of invariance properties of a large class of nonlinear evolution equations under a one‐parameter continuous (Lie) group of transformations. It is shown that, in general, the corresponding invariant variables (the subclass of which is the usual similarity variables) lead to ordinary differential equations of Painleve type in the case of inverse scattering transform solvable equations, as conjectured by Ablowitz, Ramani, and Segur. This is found to be also true for certain higher spatial dimensional versions such as the Kadomtsev–Petviashivilli, two dimensional sine–Gordon, and Ernst equations. For the nonsolvable equations considered here this invariance study leads to ordinary differential equations with movable critical points.

[1]  M. Lakshmanan,et al.  Similarity solutions for the Ernst equations with electromagnetic fields , 1981 .

[2]  Point singularities in micromagnetic systems with radial symmetry , 1980 .

[3]  Travelling waves for a model non-linear reaction-diffusion system , 1980 .

[4]  Athanassios S. Fokas,et al.  A symmetry approach to exactly solvable evolution equations , 1980 .

[5]  G. Bluman,et al.  On the remarkable nonlinear diffusion equation (∂/∂x)[a (u+b)−2(∂u/∂x)]−(∂u/∂t)=0 , 1980 .

[6]  H. Flaschka A commutator representation of Painlevé equations , 1980 .

[7]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[8]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[9]  R. Dodd,et al.  A two-connection and operator bundles for the Ernst equation for axially symmetric gravitational fields , 1979 .

[10]  M. Lakshmanan,et al.  Stationary, spherically and axially symmetric spin waves in the continuum Heisenberg spin system , 1979 .

[11]  K. Lonngren,et al.  On the invariants of the nonlinear Schrödinger equation , 1979 .

[12]  M. Lakshmanan,et al.  Kadomstev-Petviashvile and two-dimensional sine-Gordon equations: reduction to Painleve transcendents , 1979 .

[13]  R. Johnson On the inverse scattering transform, the cylindrical Korteweg-De Vries equation and similarity solutions , 1979 .

[14]  M. Boiti,et al.  Similarity solutions of the Korteweg-de Vries equation , 1979 .

[15]  M. Lakshmanan,et al.  On the invariant solutions of the Korteweg-de Vries-burgers equation , 1979 .

[16]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[17]  J. W. Miles,et al.  On the second Painlevé transcendent , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  R. Rosales The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  The Lie Derivative, Invariance Conditions, and Physical Laws , 1978 .

[20]  B. Leroy On the group of invariance of the (one-dimensional) sine-Gordon equation , 1978 .

[21]  M. Humi Invariant solutions for a class of diffusion equations , 1977 .

[22]  Peter J. Olver,et al.  Evolution equations possessing infinitely many symmetries , 1977 .

[23]  Mark J. Ablowitz,et al.  Exact Linearization of a Painlevé Transcendent , 1977 .

[24]  C. Tracy,et al.  Painlevé functions of the third kind , 1977 .

[25]  W. Chester Continuous Transformations and Differential Equations , 1977 .

[26]  S. Kumei Group theoretic aspects of conservation laws of nonlinear dispersive waves: KdV type equations and nonlinear Schrödinger equations , 1977 .

[27]  W. Ames,et al.  On invariant solutions of the Korteweg-deVries equation , 1974 .

[28]  J. Cole,et al.  Similarity methods for differential equations , 1974 .

[29]  F. Estabrook,et al.  Geometric Approach to Invariance Groups and Solution of Partial Differential Systems , 1971 .

[30]  E. L. Ince Ordinary differential equations , 1927 .