Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system.
暂无分享,去创建一个
Kiminori Kondo | Masaki Kando | Mamiko Nishiuchi | Akito Sagisaka | Koichi Ogura | Hiromitsu Kiriyama | Yuji Fukuda | S. V. Bulanov | Akifumi Yogo | Masato Kanasaki | Toshiyuki Shizuma | Hironao Sakaki | Shuhei Kanazawa | Yoshiki Nakai | Fumitaka Sasao | Takuya Shimomura | M. Kando | H. Sasao | P. Bolton | M. Nishiuchi | A. Pirozhkov | T. Tanimoto | Takehito Hayakawa | T. Esirkepov | Sergei V Bulanov | T. Hayakawa | T. Shizuma | H. Kiriyama | Y. Fukuda | A. Sagisaka | K. Ogura | H. Sakaki | K. Kondo | M. Kanasaki | Y. Nakai | T. Shimomura | S. Kanazawa | F. Sasao | A. Yogo | Alexander S Pirozhkov | Timur Zh Esirkepov | Hajime Sasao | Paul R Bolton | Tsuyoshi Tanimoto | Shyuji Kondo | Shyuji Kondo
[1] C. Wahlström,et al. Laser-accelerated protons with energy-dependent beam direction. , 2005, Physical review letters.
[2] H. Daido,et al. Review of laser-driven ion sources and their applications , 2012, Reports on progress in physics. Physical Society.
[3] M. Lontano,et al. Theory of light-ion acceleration driven by a strong charge separation. , 2008, Physical review letters.
[4] R. Kristal,et al. Fast ions and hot electrons in the laser–plasma interaction , 1986 .
[5] K Nemoto,et al. Laser ion acceleration via control of the near-critical density target. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] M Borghesi,et al. Highly efficient relativistic-ion generation in the laser-piston regime. , 2004, Physical review letters.
[7] K. A. Flippo,et al. Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targetsa) , 2011 .
[8] T. Tajima,et al. Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. , 2006, Physical review letters.
[9] S. A. Pikuz,et al. Proton acceleration to above 5.5 MeV by interaction of 1017 W/cm2 laser pulse with H2O nano-wire targets , 2011, Optics + Optoelectronics.
[10] Jie Zhang,et al. Effects of shock waves on spatial distribution of proton beams in ultrashort laser-foil interactions , 2006 .
[11] T. C. Sangster,et al. Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.
[12] Katsunobu Nishihara,et al. Feasibility of Using Laser Ion Accelerators in Proton Therapy , 2004 .
[13] J. Koga,et al. Tunable high-energy ion source via oblique laser pulse incident on a double-layer target. , 2007, Physical review letters.
[14] Anders Persson,et al. Effects of laser prepulses on laser-induced proton generation , 2010 .
[15] S. V. Bulanov,et al. The laser proton acceleration in the strong charge separation regime , 2006 .
[16] T Shimomura,et al. High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. , 2010, Optics letters.
[17] Tabak,et al. Absorption of ultra-intense laser pulses. , 1992, Physical review letters.
[18] Deanna M. Pennington,et al. Energetic proton generation in ultra-intense laser–solid interactions , 2000 .
[19] C Andersen,et al. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. , 2002, Physical review letters.
[20] Matthew Zepf,et al. The plasma mirror—A subpicosecond optical switch for ultrahigh power lasers , 2004 .
[21] Ph. A. Martin,et al. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.