Anatomically-adapted graph wavelets for improved group-level fMRI activation mapping

A graph based framework for fMRI brain activation mapping is presented. The approach exploits the spectral graph wavelet transform (SGWT) for the purpose of defining an advanced multi-resolutional spatial transformation for fMRI data. The framework extends wavelet based SPM (WSPM), which is an alternative to the conventional approach of statistical parametric mapping (SPM), and is developed specifically for group-level analysis. We present a novel procedure for constructing brain graphs, with subgraphs that separately encode the structural connectivity of the cerebral and cerebellar gray matter (GM), and address the inter-subject GM variability by the use of template GM representations. Graph wavelets tailored to the convoluted boundaries of GM are then constructed as a means to implement a GM-based spatial transformation on fMRI data. The proposed approach is evaluated using real as well as semi-synthetic multi-subject data. Compared to SPM and WSPM using classical wavelets, the proposed approach shows superior type-I error control. The results on real data suggest a higher detection sensitivity as well as the capability to capture subtle, connected patterns of brain activity.

[1]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[2]  Anders Eklund,et al.  Medical image processing on the GPU - Past, present and future , 2013, Medical Image Anal..

[3]  John-Dylan Haynes,et al.  Multi-scale classification of disease using structural MRI and wavelet transform , 2012, NeuroImage.

[4]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[5]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[6]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[7]  Ayse Pinar Saygin,et al.  Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data , 2006, NeuroImage.

[8]  Marco A. R. Ferreira,et al.  Bayesian hierarchical multi-subject multiscale analysis of functional MRI data , 2012, NeuroImage.

[9]  E. Duchesnay,et al.  A framework to study the cortical folding patterns , 2004, NeuroImage.

[10]  Michael I. Miller,et al.  Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator , 2006, IEEE Transactions on Medical Imaging.

[11]  Moo K. Chung,et al.  Cortical thickness analysis in autism with heat kernel smoothing , 2005, NeuroImage.

[12]  Rainer Hinz,et al.  Wavelet variance components in image space for spatiotemporal neuroimaging data , 2005, NeuroImage.

[13]  Dimitri Van De Ville,et al.  Statistical parametric mapping of functional MRI data using wavelets adapted to the cerebral cortex , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[14]  Dimitri Van De Ville,et al.  Tight Wavelet Frames on Multislice Graphs , 2013, IEEE Transactions on Signal Processing.

[15]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[16]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[17]  D Le Bihan,et al.  Detection of fMRI activation using Cortical Surface Mapping , 2001, Human brain mapping.

[18]  Yasser Iturria-Medina,et al.  Statistical analysis of brain tissue images in the wavelet domain: Wavelet-based morphometry , 2013, NeuroImage.

[19]  Jos B. T. M. Roerdink,et al.  Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing , 2004, IEEE Transactions on Medical Imaging.

[20]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[21]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[22]  Jae-Hun Kim,et al.  Spatial accuracy of fMRI activation influenced by volume- and surface-based spatial smoothing techniques , 2007, NeuroImage.

[23]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[24]  Michael Unser,et al.  Statistical analysis of functional MRI data in the wavelet domain , 1998, IEEE Transactions on Medical Imaging.

[25]  Thierry Blu,et al.  WSPM: Wavelet-based statistical parametric mapping , 2007, NeuroImage.

[26]  Karl J Friston,et al.  Anatomically informed basis functions in multisubject studies , 2002, Human brain mapping.

[27]  N Ramnani,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[28]  Moo K. Chung,et al.  Multi-resolutional shape features via non-Euclidean wavelets: Applications to statistical analysis of cortical thickness , 2014, NeuroImage.

[29]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[30]  William D. Penny,et al.  Bayesian fMRI data analysis with sparse spatial basis function priors , 2007, NeuroImage.

[31]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[32]  Hans Knutsson,et al.  Does Parametric Fmri Analysis with Spm Yield Valid Results? -an Empirical Study of 1484 Rest Datasets Does Parametric Fmri Analysis with Spm Yield Valid Results? - an Empirical Study of 1484 Rest Datasets , 2022 .

[33]  A. Ben Hamza,et al.  A multiresolution descriptor for deformable 3D shape retrieval , 2013, The Visual Computer.

[34]  Grégory Operto,et al.  Projection of fMRI data onto the cortical surface using anatomically-informed convolution kernels , 2008, NeuroImage.

[35]  Jeonghun Ku,et al.  Artificial shifting of fMRI activation localized by volume- and surface-based analyses , 2008, NeuroImage.

[36]  H. Eskola,et al.  MRI texture analysis in multiple sclerosis: toward a clinical analysis protocol. , 2010, Academic radiology.

[37]  Dimitri Van De Ville,et al.  Wavelets versus resels in the context of fMRI: establishing the link with SPM , 2003, SPIE Optics + Photonics.

[38]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[39]  Bharat B. Biswal,et al.  Competition between functional brain networks mediates behavioral variability , 2008, NeuroImage.

[40]  Dimitri Van De Ville,et al.  Canonical cerebellar graph wavelets and their application to FMRI activation mapping , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[41]  Gholam-Ali Hossein-Zadeh,et al.  Fixed and random effect analysis of multi-subject fMRI data using wavelet transform , 2009, Journal of Neuroscience Methods.

[42]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[43]  Simon K. Warfield,et al.  Cortical Graph Smoothing: A Novel Method for Exploiting DWI-Derived Anatomical Brain Connectivity to Improve EEG Source Estimation , 2013, IEEE Transactions on Medical Imaging.

[44]  Dimitri Van De Ville,et al.  Anatomically adapted wavelets for integrated statistical analysis of fMRI data , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[45]  Gorkem Ozkaya Randomized Wavelets on Arbitrary Domains and Applications to Functional MRI Analysis , 2012 .

[46]  Dinggang Shen,et al.  Morphological classification of brains via high-dimensional shape transformations and machine learning methods , 2004, NeuroImage.

[47]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[48]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[49]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[50]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[51]  Mark Slifstein,et al.  Effect of Spatial Smoothing on t-Maps: Arguments for Going Back from t-Maps to Masked Contrast Images , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[52]  Dimitri Van De Ville,et al.  Machine Learning with Brain Graphs: Predictive Modeling Approaches for Functional Imaging in Systems Neuroscience , 2013, IEEE Signal Processing Magazine.

[53]  E. Bullmore,et al.  Wavelets and functional magnetic resonance imaging of the human brain , 2004, NeuroImage.

[54]  Jean Gotman,et al.  Anatomically informed interpolation of fMRI data on the cortical surface , 2006, NeuroImage.

[55]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[56]  Jörn Diedrichsen,et al.  Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure , 2011, NeuroImage.

[57]  Jörn Diedrichsen,et al.  A spatially unbiased atlas template of the human cerebellum , 2006, NeuroImage.

[58]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[59]  Dimitri Van De Ville,et al.  Integrated wavelet processing and spatial statistical testing of fMRI data , 2004, NeuroImage.

[60]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[61]  P. Hluštík,et al.  Effects of spatial smoothing on fMRI group inferences. , 2008, Magnetic resonance imaging.

[62]  Karl J. Friston,et al.  Anatomically Informed Basis Functions , 2000, NeuroImage.