Morphological differences between minicolumns in human and nonhuman primate cortex.

Our study performed a quantitative investigation of minicolumns in the planum temporale (PT) of human, chimpanzee, and rhesus monkey brains. This analysis distinguished minicolumns in the human cortex from those of the other nonhuman primates. Human cell columns are larger, contain more neuropil space, and pack more cells into the core area of the column than those of the other primates tested. Because the minicolumn is a basic anatomical and functional unit of the cortex, this strong evidence showed reorganization in this area of the human brain. The relationship between the minicolumn and cortical volume is also discussed.

[1]  M. Vannier,et al.  Reassessment of the Taung early hominid from a neurological perspective , 1989 .

[2]  D. Falk,et al.  Evidence for a dual pattern of cranial venous sinuses on the endocranial cast of Taung (Australopithecus africanus). , 1988, American journal of physical anthropology.

[3]  G. Yeni-Komshian,et al.  Anatomical study of cerebral asymmetry in the temporal lobe of humans, chimpanzees, and rhesus monkeys. , 1976, Science.

[4]  B L Whitsel,et al.  Optical imaging in vitro provides evidence for the minicolumnar nature of cortical response , 1997, Neuroreport.

[5]  K Zilles,et al.  Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis. , 1991, Cerebral cortex.

[6]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[7]  R. Holloway,,et al.  Anatomical brain asymmetry in monkeys: frontal, temporoparietal, and limbic cortex in Macaca. , 1989, American journal of physical anthropology.

[8]  R. Holloway,,et al.  Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. , 1982, American journal of physical anthropology.

[9]  A. Peters,et al.  Layer IVA of rhesus monkey primary visual cortex. , 1991, Cerebral cortex.

[10]  D. Kelly,et al.  Minicolumnar organization within somatosensory cortical segregates: I. Development of afferent connections. , 1994, Cerebral cortex.

[11]  J J Bartko,et al.  Another view of schizophrenia subtypes. A report from the international pilot study of schizophrenia. , 1976, Archives of general psychiatry.

[12]  B. Whitsel,et al.  Spatial organization of the peripheral input to area 1 cell columns. II. The forelimb representation achieved by a mosaic of segregates , 1988, Brain Research Reviews.

[13]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[14]  M. Gazzaniga Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? , 2000, Brain : a journal of neurology.

[15]  R. Yuste,et al.  Neuronal domains in developing neocortex. , 1992, Science.

[16]  B L Whitsel,et al.  Minicolumnar activation patterns in cat and monkey SI cortex. , 1993, Cerebral cortex.

[17]  A. Peters,et al.  Neuronal organization in area 17 of cat visual cortex. , 1993, Cerebral cortex.

[18]  N. Geschwind,et al.  Hemispheric differences in the brains of great apes. , 1975, Brain, behavior and evolution.

[19]  H. Damasio,et al.  The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. , 2000, Journal of human evolution.

[20]  G. V. Van Hoesen,et al.  The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. , 1997, Journal of human evolution.

[21]  N. Swindale,et al.  How many maps are there in visual cortex? , 2000, Cerebral cortex.

[22]  H. Stanley,et al.  Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Insel,et al.  The primate neocortex in comparative perspective using magnetic resonance imaging. , 1999, Journal of human evolution.

[24]  Endocranial capacity in Sts 71 (Australopithecus africanus) by three‐dimensional computed tomography , 2000, The Anatomical record.

[25]  T. M. Walsh,et al.  A study of the organization of apical dendrites in the somatic sensory cortex of the rat , 1972, The Journal of comparative neurology.

[26]  R. Holloway, The evolution of the primate brain: some aspects of quantitative relations. , 1968, Brain research.

[27]  H. Seldon Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception , 1981, Brain Research.

[28]  Andrew E. Switala,et al.  Quantitative analysis of cell columns in the cerebral cortex , 2000, Journal of Neuroscience Methods.

[29]  A. Braun,et al.  Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke's brain language area homolog. , 1998, Science.

[30]  W. Singer,et al.  Interhemispheric asymmetries of the modular structure in human temporal cortex. , 2000, Science.

[31]  Marjorie LeMay,et al.  MORPHOLOGICAL CEREBRAL ASYMMETRIES OF MODERN MAN, FOSSIL MAN, AND NONHUMAN PRIMATE , 1976, Annals of the New York Academy of Sciences.

[32]  J. Kaas,et al.  Prefrontal connections of the parabelt auditory cortex in macaque monkeys , 1999, Brain Research.

[33]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[34]  B L Whitsel,et al.  Mechanisms underlying somatosensory cortical dynamics: II. In vitro studies. , 1992, Cerebral cortex.

[35]  A. Schleicher,et al.  Gyrification in the cerebral cortex of primates. , 1989, Brain, behavior and evolution.

[36]  H. Burton,et al.  Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat , 1974, The Journal of comparative neurology.

[37]  R. Holloway,,et al.  The casts of fossil hominid brains. , 1974, Scientific American.

[38]  M. Diamond,et al.  Demonstration of discrete place‐defined columns—segregates—in the cat SI , 1990, The Journal of comparative neurology.

[39]  J. Szentágothai The modular architectonic principle of neural centers. , 1983, Reviews of physiology, biochemistry and pharmacology.

[40]  E. G. Jones,et al.  Microcolumns in the cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Dudek,et al.  Sex differences in brain/body relationships of Rhesus monkeys and humans. , 1999, Journal of human evolution.

[42]  A. Schleicher,et al.  Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex , 1995, The Journal of comparative neurology.

[43]  D. Kelly,et al.  Minicolumnar organization within somatosensory cortical segregates: II. Emergent functional properties. , 1994, Cerebral cortex.

[44]  M S Gazzaniga Regional Differences in Cortical Organization , 2000, Science.

[45]  H. Seidler,et al.  Endocranial capacity in an early hominid cranium from Sterkfontein, South Africa. , 1998, Science.

[46]  Karl Zilles,et al.  A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue , 1986, Journal of Neuroscience Methods.

[47]  B. Whitsel,et al.  A combined 2‐deoxyglucose and neurophysiological study of primate somatosensory cortex , 1987, The Journal of comparative neurology.

[48]  H. J. Jerison THE THEORY OF ENCEPHALIZATION , 1977, Annals of the New York Academy of Sciences.

[49]  H. Haug History of neuromorphometry , 1986, Journal of Neuroscience Methods.

[50]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[51]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[52]  L. Radinsky Aegyptopithecus endocasts: oldest record of a pongid brain. , 1973, American journal of physical anthropology.

[53]  A. K. Miller,et al.  Cell counting in the human brain: traditional and electronic methods* , 1975, Postgraduate medical journal.

[54]  I. Kostović,et al.  Cytoarchitectonic parameters of developmental capacity of the human associative auditory cortex during postnatal life. , 1988, Acta oto-laryngologica.

[55]  B. Whitsel,et al.  Spatial organization of the peripheral input to area 1 cell columns. I. the detection of ‘segregates’ , 1988, Brain Research Reviews.

[56]  K Zilles,et al.  Limbic frontal cortex in hominoids: a comparative study of area 13. , 1998, American journal of physical anthropology.

[57]  D. Falk,et al.  Directional asymmetry in the forelimb of Macaca mulatta. , 1988, American Journal of Physical Anthropology.

[58]  A. Peters,et al.  Myelinated axons and the pyramidal cell modules in monkey primary visual cortex , 1996, The Journal of comparative neurology.

[59]  New Endocranial Values for the East African Early Hominids , 1973, Nature.

[60]  H. Seldon Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions , 1981, Brain Research.

[61]  J. Rilling,et al.  Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI) , 1998, Neuroreport.

[62]  E. Armstrong 1 – Evolution of the Brain , 1990 .

[63]  H. Seldon,et al.  The Anatomy of Speech Perception , 1985 .

[64]  D. Falk Meningeal arterial patterns in great apes: implications for hominid vascular evolution. , 1993, American journal of physical anthropology.

[65]  M. Gazzaniga,et al.  An evolutionary perspective on hemispheric asymmetries. , 2000, Brain and cognition.

[66]  D. Folk Cerebral asymmetry in Old World monkeys , 1978 .

[67]  Jelena Krmpoti Nemani,et al.  Prenatal and perinatal development of radial cell columns in the human auditory cortex. , 1984 .

[68]  P. Rakić Mode of cell migration to the superficial layers of fetal monkey neocortex , 1972, The Journal of comparative neurology.

[69]  R. Quester,et al.  The shrinkage of the human brain stem during formalin fixation and embedding in paraffin , 1997, Journal of Neuroscience Methods.

[70]  P. Rakic,et al.  Defects of neuronal migration and the pathogenesis of cortical malformations. , 1988, Progress in brain research.

[71]  H. J. Jerison Animal intelligence as encephalization. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[72]  A. Peters,et al.  Organization of pyramidal neurons in area 17 of monkey visual cortex , 1991, The Journal of comparative neurology.

[73]  J. Kaas,et al.  Distinctive compartmental organization of human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.