PORT-ESTIMATION OF A SHAPE SECOND-ORDER PARAMETER

• In this paper we study, under a semi-parametric framework and for heavy right tails, a class of location invariant estimators of a shape second-order parameter, ruling the rate of convergence of the normalised sequence of maximum values to a non-degenerate limit. This class is based on the PORT methodology, with PORT standing for peaks over random thresholds. Asymptotic normality of such estimators is achieved under a third-order condition on the right-tail of the underlying model F and for suitable large intermediate ranks. An illustration of the finite sample behaviour of the estimators is provided through a small-scale Monte-Carlo simulation study. Key-Words: • asymptotic properties; location/scale invariant estimation; Monte-Carlo simulation; PORT methodology; sample of excesses; semi-parametric estimation; shape secondorder parameters; statistics of extremes; third-order framework. AMS Subject Classification: • 62G32, 62E20; 65C05. 300 L. Henriques-Rodrigues, M.I. Gomes, M.I. Fraga Alves and C. Neves PORT-Estimation of a Shape Second-Order Parameter 301

[1]  M. J. Martins,et al.  “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .

[2]  M. Ivette Gomes,et al.  Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .

[3]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[4]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[5]  Frederico Caeiro,et al.  A Semi-parametric Estimator of a Shape Second-Order Parameter , 2014 .

[6]  Laurens de Haan,et al.  Third order extended regular variation , 2006 .

[7]  Jan Beirlant,et al.  LINKING PARETO-TAIL KERNEL GOODNESS-OF-FIT STATISTICS WITH TAIL INDEX AT OPTIMAL THRESHOLD AND SECOND ORDER ESTIMATION , 2008 .

[8]  Laurens de Haan,et al.  Slow Variation and Characterization of Domains of Attraction , 1984 .

[9]  M. Ivette Gomes,et al.  Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .

[10]  M. Ivette Gomes,et al.  PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..

[11]  M. Ivette Gomes,et al.  Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .

[12]  M. Gomes,et al.  Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .

[13]  General Regular Variation of n–th Order and the 2nd Order Edgeworth Expansion of the Extreme Value Distribution (I) , 2005 .

[14]  A Note on the Port Methodology in the Estimation of a Shape Second-Order Parameter , 2013 .

[15]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[16]  Jan Beirlant,et al.  Kernel estimators for the second order parameter in extreme value statistics , 2010 .

[17]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[18]  M. Ivette Gomes,et al.  HIGH QUANTILE ESTIMATION AND THE PORT METHODOLOGY , 2009 .

[19]  Bias Reduction in the Estimation of a Shape Second-order Parameter of a Heavy Right Tail Model , 2012 .

[20]  M. Gomes,et al.  AN OVERVIEW AND OPEN RESEARCH TOPICS IN STATISTICS OF UNIVARIATE EXTREMES , 2012 .

[21]  M. Gomes,et al.  Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions , 2008 .

[22]  M. Ivette Gomes,et al.  A new class of semi-parametric estimators of the second order parameter. , 2003 .

[23]  F. Mosteller On Some Useful "Inefficient" Statistics , 1946 .

[24]  Cécile Mercadier,et al.  Semi-parametric estimation for heavy tailed distributions , 2010 .

[25]  M. Ivette Gomes,et al.  Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study , 2011, Commun. Stat. Simul. Comput..

[26]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[27]  M. Neves,et al.  Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .

[28]  M. Ivette Gomes,et al.  Mixed moment estimator and location invariant alternatives , 2009 .

[29]  Frederico Caeiro,et al.  A new class of estimators of a “scale” second order parameter , 2007 .

[30]  From extended regular variation to regular variation with application in extreme value statistics , 2009 .

[31]  M. Ivette Gomes,et al.  IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .

[32]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[33]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .