PORT-ESTIMATION OF A SHAPE SECOND-ORDER PARAMETER
暂无分享,去创建一个
[1] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[2] M. Ivette Gomes,et al. Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .
[3] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[4] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[5] Frederico Caeiro,et al. A Semi-parametric Estimator of a Shape Second-Order Parameter , 2014 .
[6] Laurens de Haan,et al. Third order extended regular variation , 2006 .
[7] Jan Beirlant,et al. LINKING PARETO-TAIL KERNEL GOODNESS-OF-FIT STATISTICS WITH TAIL INDEX AT OPTIMAL THRESHOLD AND SECOND ORDER ESTIMATION , 2008 .
[8] Laurens de Haan,et al. Slow Variation and Characterization of Domains of Attraction , 1984 .
[9] M. Ivette Gomes,et al. Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .
[10] M. Ivette Gomes,et al. PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..
[11] M. Ivette Gomes,et al. Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .
[12] M. Gomes,et al. Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .
[13] General Regular Variation of n–th Order and the 2nd Order Edgeworth Expansion of the Extreme Value Distribution (I) , 2005 .
[14] A Note on the Port Methodology in the Estimation of a Shape Second-Order Parameter , 2013 .
[15] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[16] Jan Beirlant,et al. Kernel estimators for the second order parameter in extreme value statistics , 2010 .
[17] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[18] M. Ivette Gomes,et al. HIGH QUANTILE ESTIMATION AND THE PORT METHODOLOGY , 2009 .
[19] Bias Reduction in the Estimation of a Shape Second-order Parameter of a Heavy Right Tail Model , 2012 .
[20] M. Gomes,et al. AN OVERVIEW AND OPEN RESEARCH TOPICS IN STATISTICS OF UNIVARIATE EXTREMES , 2012 .
[21] M. Gomes,et al. Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions , 2008 .
[22] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[23] F. Mosteller. On Some Useful "Inefficient" Statistics , 1946 .
[24] Cécile Mercadier,et al. Semi-parametric estimation for heavy tailed distributions , 2010 .
[25] M. Ivette Gomes,et al. Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study , 2011, Commun. Stat. Simul. Comput..
[26] A. V. D. Vaart,et al. Asymptotic Statistics: U -Statistics , 1998 .
[27] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[28] M. Ivette Gomes,et al. Mixed moment estimator and location invariant alternatives , 2009 .
[29] Frederico Caeiro,et al. A new class of estimators of a “scale” second order parameter , 2007 .
[30] From extended regular variation to regular variation with application in extreme value statistics , 2009 .
[31] M. Ivette Gomes,et al. IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .
[32] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[33] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .