A numerical scheme for a class of sweeping processes

The aim of this paper is to study a whole class of first order differential inclusions, which fit into the framework of perturbed sweeping process by uniformly prox-regular sets. After obtaining well-posedness results, we propose a numerical scheme based on a prediction-correction algorithm and we prove its convergence. Finally we apply these results to a problem coming from the modelling of crowd motion.

[1]  G. Colombo,et al.  The Sweeping Processes without Convexity , 1999 .

[2]  Bertrand Maury,et al.  A time-stepping scheme for inelastic collisions , 2006, Numerische Mathematik.

[3]  M. Marques,et al.  BV periodic solutions of an evolution problem associated with continuous moving convex sets , 1995 .

[4]  Bertrand Maury,et al.  Handling of Contacts in Crowd Motion Simulations , 2009 .

[5]  Giovanni Colombo,et al.  Sweeping by a continuous prox-regular set $ , 2003 .

[6]  Bertrand Maury,et al.  Un Modèle de Mouvements de Foule , 2007 .

[7]  Juliette Venel,et al.  Integrating Strategies in Numerical Modelling of Crowd Motion , 2010 .

[8]  F. Clarke,et al.  Proximal Smoothness and the Lower{C 2 Property , 1995 .

[9]  Lionel Thibault,et al.  On various notions of regularity of sets in nonsmooth analysis , 2002 .

[10]  J. A. Delgado Blaschke's theorem for convex hypersurfaces , 1979 .

[11]  B. Maury,et al.  A mathematical framework for a crowd motion model , 2008 .

[12]  C. Castaing,et al.  Evolution equations governed by the sweeping process , 1993 .

[13]  Frédéric Bernicot,et al.  Existence of sweeping process in Banach spaces under directional prox-regularity , 2008, 0812.4673.

[14]  R. Rockafellar,et al.  Local differentiability of distance functions , 2000 .

[15]  Bertrand Maury,et al.  A discrete contact model for crowd motion , 2009, 0901.0984.

[16]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[17]  Lionel Thibault,et al.  BV solutions of nonconvex sweeping process differential inclusion with perturbation , 2006 .

[18]  Lionel Thibault,et al.  Relaxation of an optimal control problem involving a perturbed sweeping process , 2005, Math. Program..

[19]  L. Thibault Sweeping process with regular and nonregular sets , 2003 .

[20]  H. Benabdellah Existence of Solutions to the Nonconvex Sweeping Process , 2000 .

[21]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[22]  J. Moreau Evolution problem associated with a moving convex set in a Hilbert space , 1977 .