Quantum-dot cellular automata

There has been increasing concern in recent years that the limits of what can be achieved with current approaches to improving device performance will soon be reached. Quantum-dot cellular automata (QCA) have been proposed as a means of getting around these limitations. This paper reviews the work done concerning QCA to date. First, the QCA architecture is described along with a model used for calculating their properties. Next, the approach to computing with QCA by implementing QCA analogs to traditional logic devices will be discussed. Issues that affect the performance of these devices and the experimental work that has been done are summarized. Finally, some interesting QCA applications are reviewed.

[1]  K. Ploog,et al.  Single-electron charging of quantum-dot atoms. , 1992, Physical review letters.

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  J. Randall A lateral-resonant-tunneling universal quantum-dot cell , 1993 .

[4]  Gate-controlled double electron layer tunnelling transistor and single transistor digital logic applications , 1998 .

[5]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[6]  Supriyo Bandyopadhyay,et al.  Supercomputing with spin-polarized single electrons in a quantum coupled architecture , 1994 .

[7]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum dots for quantum cellular automata , 1993 .

[8]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[9]  West,et al.  N-electron ground state energies of a quantum dot in magnetic field. , 1993, Physical review letters.

[10]  Vwani P. Roychowdhury,et al.  Nanoelectronic architecture for Boolean logic , 1997, Proc. IEEE.

[11]  G. Ashwell Molecular electronics , 1992 .

[12]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[13]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[14]  Lov K. Grover Beyond Factorization and Search , 1998, Science.

[15]  David P. DiVincenzo,et al.  Real and realistic quantum computers , 1998, Nature.

[16]  G. Iannaccone,et al.  Modeling and manufacturability assessment of bistable quantum-dot cells , 1998, cond-mat/9804228.

[17]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[18]  W. Porod,et al.  Quantum-dot cellular automata , 1999 .

[19]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[20]  Vlatko Vedral,et al.  Basics of quantum computation , 1998, quant-ph/9802065.

[21]  Kumar,et al.  Electron states in a GaAs quantum dot in a magnetic field. , 1990, Physical review. B, Condensed matter.

[22]  Wolfgang Porod,et al.  Quantum cellular neural networks , 1996, cond-mat/0005038.

[23]  T. J. Fountain The design of highly-parallel image processing systems using nanoelectronic devices , 1997, Proceedings Fourth IEEE International Workshop on Computer Architecture for Machine Perception. CAMP'97.

[24]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[25]  Y. Amemiya,et al.  Annealing method for operating quantum-cellular-automaton systems , 1997 .

[26]  Dynamical response in an array of quantum-dot cells , 1998 .

[27]  Konstantin K. Likharev,et al.  Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .

[28]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[29]  P. Douglas Tougaw,et al.  Regular arrays of quantum-dot cellular automata “macrocells” , 2000 .

[30]  David K. Ferry Quantum Mechanics : An Introduction for Device Physicists and Electrical Engineers, Second Edition , 1995 .

[31]  Neil F. Johnson,et al.  A possible nanometer-scale computing device based on an adding cellular automaton , 1996 .

[32]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[33]  C. Lent,et al.  Demonstration of a six-dot quantum cellular automata system , 1998 .

[34]  Gary H. Bernstein,et al.  Experimental demonstration of a leadless quantum-dot cellular automata cell , 2000 .

[35]  Wolfgang Porod,et al.  Quantum-dot cellular automata : computing with coupled quantum dots , 1999 .

[36]  Kris Kempa,et al.  Spontaneous polarization of electrons in quantum dashes , 1991 .

[37]  Karl-Fredrik Berggren,et al.  Influence of imperfections on the dynamical response in model quantum cellular automata , 1999 .

[38]  Gerhard Grössing,et al.  Quantum Cellular Automata , 1988, Complex Syst..

[39]  P. D. Tougaw,et al.  AN ALTERNATIVE GEOMETRY FOR QUANTUM-DOT CELLULAR AUTOMATA , 1999 .

[40]  John C. Lusth,et al.  A graph theoretic approach to quantum cellular design and analysis , 1996 .

[41]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[42]  Gary H. Bernstein,et al.  Experimental demonstration of a binary wire for quantum-dot cellular automata , 1999 .

[43]  R. Stanley Williams,et al.  Lithographic positioning of self-assembled Ge islands on Si(001) , 1997 .

[44]  T. Fehlner,et al.  On the role of PES data in the identification of metal—metal charge transfer bands in clusters of clusters , 1993 .

[45]  Magnus Willander,et al.  Modelling and design of quantum dot cellular automata , 1998 .

[46]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[47]  G. Iannaccone,et al.  Thermal behavior of quantum cellular automaton wires , 2000 .

[48]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum‐dot cells , 1993 .

[49]  Brandon Dixon,et al.  A Characterization of Important algorithms for Quantum-Dot Cellular Automata , 1999, Inf. Sci..

[50]  A Novel Quantum Cellular Automata Logic with Loop Structures , 1994 .

[51]  Gary H. Bernstein,et al.  Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata , 2000 .

[52]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[53]  Kazumasa Nomoto,et al.  Single electron–photon logic device using coupled quantum dots: Computation with the Fock ground state , 1996 .

[54]  Gary H. Bernstein,et al.  Charge detector realization for AlGaAs/GaAs quantum‐dot cellular automata , 1996 .

[55]  Dynamic behavior of asymmetric quantum dot cells , 2000 .

[56]  Craig S. Lent,et al.  Effect of Stray Charge on Quantum Cellular Automata , 1995 .

[57]  Craig S. Lent,et al.  Bistable saturation due to single electron charging in rings of tunnel junctions , 1994 .

[58]  Wolfgang Porod,et al.  Design of gate-confined quantum-dot structures in the few-electron regime , 1995 .

[59]  G. Troup Photon counting and photon statistics , 1973 .